Ireland Ronald G, Kibschull Mark, Audet Julie, Ezzo Maya, Hinz Boris, Lye Stephen J, Simmons Craig A
Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Biomaterials. 2020 Jul;248:120017. doi: 10.1016/j.biomaterials.2020.120017. Epub 2020 Apr 3.
Stem cells in their microenvironment are exposed to a plethora of biochemical signals and biophysical forces. Interrogating the role of each factor in the cell microenvironment, however, remains difficult due to the inability to study microenvironmental cues and tease apart their interactions in high throughput. To address this need, we developed an extracellular matrix (ECM) microarray screening platform capable of tightly controlling substrate stiffness and ECM protein composition to screen the effects of these cues and their interactions on cell fate. We combined this platform with a design of experiments screening strategy to identify optimal conditions that can maintain human pluripotent stem cell (hPSC) pluripotency in chemically defined, xeno-free conditions. Combinations of ECM proteins (fibronectin, vitronectin, laminin-521, and collagen IV) were deposited on polydimethylsiloxane substrates with elastic moduli ranging from ~1 to 60 kPa using a high throughput protein plotter. Through our screening approach, we identified several non-intuitive protein-protein and protein-stiffness interactions and developed three novel culture substrates. hPSCs grown on these novel culture substrates displayed higher proliferation rates and pluripotency marker expression than current gold-standard culture substrates Geltrex- and vitronectin-coated plastic. This ECM microarray and screening approach is not limited to the factors studied here and can be broadly applied to other cell types to systematically screen microenvironmental conditions to optimally guide cell phenotype.
处于其微环境中的干细胞会接触到大量的生化信号和生物物理力。然而,由于无法在高通量条件下研究微环境线索并梳理它们之间的相互作用,因此确定每个因素在细胞微环境中的作用仍然很困难。为满足这一需求,我们开发了一种细胞外基质(ECM)微阵列筛选平台,该平台能够严格控制底物硬度和ECM蛋白组成,以筛选这些线索及其相互作用对细胞命运的影响。我们将该平台与实验设计筛选策略相结合,以确定在化学成分明确、无动物源的条件下维持人类多能干细胞(hPSC)多能性的最佳条件。使用高通量蛋白质绘图仪,将ECM蛋白(纤连蛋白、玻连蛋白、层粘连蛋白-521和IV型胶原蛋白)的组合沉积在弹性模量范围约为1至60 kPa的聚二甲基硅氧烷底物上。通过我们的筛选方法,我们确定了几种非直观的蛋白质-蛋白质和蛋白质-硬度相互作用,并开发了三种新型培养底物。在这些新型培养底物上生长的hPSC比目前的金标准培养底物(Geltrex和玻连蛋白包被的塑料)表现出更高的增殖率和多能性标志物表达。这种ECM微阵列和筛选方法不仅限于此处研究的因素,还可以广泛应用于其他细胞类型,以系统地筛选微环境条件,从而最佳地引导细胞表型。