Suppr超能文献

基于每位患者的急性冠脉综合征复发风险预测:一项回顾性研究。

Recurrence risk prediction of acute coronary syndrome per patient as a personalized ACS recurrence risk: a retrospective study.

机构信息

Department of Big Data, Chungbuk National University, Cheongju, South Korea.

Department of Management Information Systems, Chungbuk National University, Cheongju, South Korea.

出版信息

PeerJ. 2022 Nov 15;10:e14348. doi: 10.7717/peerj.14348. eCollection 2022.

Abstract

Acute coronary syndrome (ACS) has been one of the most important issues in global public health. The high recurrence risk of patients with coronary heart disease (CHD) has led to the importance of post-discharge care and secondary prevention of CHD. Previous studies provided binary results of ACS recurrence risk; however, studies providing the recurrence risk of an individual patient are rare. In this study, we conducted a model which provides the recurrence risk probability for each patient, along with the binary result, with two datasets from the Korea Health Insurance Review and Assessment Service and Chungbuk National University Hospital. The total data of 6,535 patients who had been diagnosed with ACS were used to build a machine learning model by using logistic regression. Data including age, gender, procedure codes, procedure reason, prescription drug codes, and condition codes were used as the model predictors. The model performance showed 0.893, 0.894, 0.851, 0.869, and 0.921 for accuracy, precision, recall, F1-score, and AUC, respectively. Our model provides the ACS recurrence probability of each patient as a personalized ACS recurrence risk, which may help motivate the patient to reduce their own ACS recurrence risk. The model also shows that acute transmural myocardial infarction of an unspecified site, and other sites and acute transmural myocardial infarction of an unspecified site contributed most significantly to ACS recurrence with an odds ratio of 97.908 as a procedure reason code and with an odds ratio of 58.215 as a condition code, respectively.

摘要

急性冠状动脉综合征(ACS)一直是全球公共卫生的重要问题之一。冠心病(CHD)患者的高复发风险导致了出院后护理和 CHD 二级预防的重要性。先前的研究提供了 ACS 复发风险的二元结果;然而,提供个体患者复发风险的研究很少。在这项研究中,我们使用来自韩国健康保险审查和评估服务以及忠北国立大学医院的两个数据集,构建了一个为每个患者提供复发风险概率的模型,同时提供二元结果。使用逻辑回归对总共 6535 名被诊断为 ACS 的患者的数据进行了机器学习模型的构建。模型预测因子包括年龄、性别、手术代码、手术原因、处方药代码和疾病代码。模型性能分别为准确性 0.893、精确性 0.894、召回率 0.851、F1 分数 0.869 和 AUC 0.921。我们的模型为每个患者提供 ACS 复发的概率,作为个性化的 ACS 复发风险,这可能有助于激励患者降低自身 ACS 复发的风险。该模型还表明,急性透壁性心肌梗死的未指定部位和其他部位以及急性透壁性心肌梗死的未指定部位是 ACS 复发的最重要原因,其作为手术原因代码的优势比为 97.908,作为疾病代码的优势比为 58.215。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9673763/bc7820b1d159/peerj-10-14348-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验