Department of Acute & Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Nat Commun. 2020 Aug 7;11(1):3966. doi: 10.1038/s41467-020-17804-2.
Prompt identification of acute coronary syndrome is a challenge in clinical practice. The 12-lead electrocardiogram (ECG) is readily available during initial patient evaluation, but current rule-based interpretation approaches lack sufficient accuracy. Here we report machine learning-based methods for the prediction of underlying acute myocardial ischemia in patients with chest pain. Using 554 temporal-spatial features of the 12-lead ECG, we train and test multiple classifiers on two independent prospective patient cohorts (n = 1244). While maintaining higher negative predictive value, our final fusion model achieves 52% gain in sensitivity compared to commercial interpretation software and 37% gain in sensitivity compared to experienced clinicians. Such an ultra-early, ECG-based clinical decision support tool, when combined with the judgment of trained emergency personnel, would help to improve clinical outcomes and reduce unnecessary costs in patients with chest pain.
急性冠状动脉综合征的快速识别在临床实践中是一项挑战。在初始患者评估期间,12 导联心电图(ECG)易于获得,但当前基于规则的解释方法准确性不足。在这里,我们报告了基于机器学习的方法,用于预测胸痛患者的潜在急性心肌缺血。使用 12 导联 ECG 的 554 个时空特征,我们在两个独立的前瞻性患者队列(n=1244)上训练和测试了多个分类器。在保持更高阴性预测值的同时,我们的最终融合模型与商业解释软件相比灵敏度提高了 52%,与有经验的临床医生相比灵敏度提高了 37%。这种基于超早期心电图的临床决策支持工具,如果与经过培训的急救人员的判断相结合,将有助于改善胸痛患者的临床结局并降低不必要的成本。