Suppr超能文献

手术器械检测与跟踪技术:实现手术技能评估数据集标注的自动化

Surgical instrument detection and tracking technologies: Automating dataset labeling for surgical skill assessment.

作者信息

Nema Shubhangi, Vachhani Leena

机构信息

Systems and Control Group, Indian Institute of Technology, Mumbai, Maharashtra, India.

出版信息

Front Robot AI. 2022 Nov 4;9:1030846. doi: 10.3389/frobt.2022.1030846. eCollection 2022.

Abstract

Surgical skills can be improved by continuous surgical training and feedback, thus reducing adverse outcomes while performing an intervention. With the advent of new technologies, researchers now have the tools to analyze surgical instrument motion to differentiate surgeons' levels of technical skill. Surgical skills assessment is time-consuming and prone to subjective interpretation. The surgical instrument detection and tracking algorithm analyzes the image captured by the surgical robotic endoscope and extracts the movement and orientation information of a surgical instrument to provide surgical navigation. This information can be used to label raw surgical video datasets that are used to form an action space for surgical skill analysis. Instrument detection and tracking is a challenging problem in MIS, including robot-assisted surgeries, but vision-based approaches provide promising solutions with minimal hardware integration requirements. This study offers an overview of the developments of assessment systems for surgical intervention analysis. The purpose of this study is to identify the research gap and make a leap in developing technology to automate the incorporation of new surgical skills. A prime factor in automating the learning is to create datasets with minimal manual intervention from raw surgical videos. This review encapsulates the current trends in artificial intelligence (AI) based visual detection and tracking technologies for surgical instruments and their application for surgical skill assessment.

摘要

通过持续的手术训练和反馈可以提高手术技能,从而在进行干预时减少不良后果。随着新技术的出现,研究人员现在有了分析手术器械运动以区分外科医生技术水平的工具。手术技能评估既耗时又容易受到主观解读的影响。手术器械检测与跟踪算法分析手术机器人内窥镜捕获的图像,并提取手术器械的运动和方向信息以提供手术导航。该信息可用于标记原始手术视频数据集,这些数据集用于形成手术技能分析的动作空间。器械检测与跟踪在包括机器人辅助手术在内的微创外科手术中是一个具有挑战性的问题,但基于视觉的方法以最低的硬件集成要求提供了有前景的解决方案。本研究概述了用于手术干预分析的评估系统的发展情况。本研究的目的是找出研究差距,并在开发使新手术技能自动化整合的技术方面取得飞跃。自动化学习的一个主要因素是从原始手术视频中以最少的人工干预创建数据集。这篇综述总结了基于人工智能(AI)的手术器械视觉检测与跟踪技术的当前趋势及其在手术技能评估中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f9e/9671944/32608330e58c/frobt-09-1030846-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验