Suppr超能文献

用于生物电化学应用的分级纳米结构金电极的简易制备

Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications.

作者信息

Sondhi Palak, Neupane Dharmendra, Bhattarai Jay K, Demchenko Alexei V, Stine Keith J

机构信息

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA.

Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA.

出版信息

J Electroanal Chem (Lausanne). 2022 Nov 1;924. doi: 10.1016/j.jelechem.2022.116865. Epub 2022 Oct 3.

Abstract

Nanoporous gold (NPG) is one of the most extensively investigated nanomaterials owing to its tunable pore size, ease of surface modification, and range of applications from catalysis, actuation, and molecular release to the development of electrochemical sensors. In an effort to improve the usefulness of NPG, a simple and robust method for the fabrication of hierarchical and bimodal nanoporous gold electrodes (hb-NPG) containing both macro-and mesopores is reported using electrochemical alloying and dealloying processes to engineer a bicontinuous solid/void morphology. Scanning electron microscopy (color SEM) images depict the hierarchical pore structure created after the multistep synthesis with an ensemble of tiny pores below 100 nm in size located in ligaments spanning larger pores of several hundred nanometers. Smaller-sized pores are exploited for surface modification, and the network of larger pores aids in molecular transport. Cyclic voltammetry (CV) was used to compare the electrochemically active surface area of the hierarchical bimodal structure with that of the regular unimodal NPG with an emphasis on the critical role of both dealloying and annealing in creating the desired structure. The adsorption of different proteins was followed using UV-vis absorbance measurements of solution depletion revealing the high loading capacity of hb-NPG. The surface coverage of lipoic acid on the hb-NPG was analyzed using thermogravimetric analysis (TGA) and reductive desorption. The roughness factor determinations suggest that the fabricated hb-NPG electrode has tremendous potential for biosensor development by changing the scaling relations between volume and surface area which may lead to improved analytical performance. We have chosen to take advantage of the surface architectures of hb-NPG due to the presence of a large specific surface area for functionalization and rapid transport pathways for faster response. It is shown that the hb-NPG electrode has a higher sensitivity for the amperometric detection of glucose than does an NPG electrode of the same geometric surface area.

摘要

纳米多孔金(NPG)是研究最为广泛的纳米材料之一,这归因于其可调节的孔径、易于进行表面修饰,以及在催化、驱动、分子释放乃至电化学传感器开发等众多领域的应用。为了提高NPG的实用性,本文报道了一种简单且稳健的方法来制备包含大孔和中孔的分级双峰纳米多孔金电极(hb-NPG),该方法利用电化学合金化和脱合金化过程来构建双连续的固体/孔隙形态。扫描电子显微镜(彩色SEM)图像描绘了多步合成后形成的分级孔隙结构,在数百纳米的较大孔隙之间的连接体中存在尺寸小于100nm的微小孔隙。较小尺寸的孔隙用于表面修饰,而较大孔隙的网络则有助于分子传输。循环伏安法(CV)用于比较分级双峰结构与常规单峰NPG的电化学活性表面积,重点关注脱合金化和退火在形成所需结构中的关键作用。通过测量溶液消耗的紫外可见吸光度来跟踪不同蛋白质的吸附情况,结果表明hb-NPG具有高负载能力。使用热重分析(TGA)和还原解吸分析了hb-NPG上硫辛酸的表面覆盖率。粗糙度因子的测定表明,所制备的hb-NPG电极通过改变体积与表面积之间的比例关系,在生物传感器开发方面具有巨大潜力,这可能会提高分析性能。由于存在用于功能化的大比表面积和用于更快响应的快速传输途径,我们选择利用hb-NPG的表面结构。结果表明,与具有相同几何表面积的NPG电极相比,hb-NPG电极对葡萄糖的安培检测具有更高的灵敏度。

相似文献

1
Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications.
J Electroanal Chem (Lausanne). 2022 Nov 1;924. doi: 10.1016/j.jelechem.2022.116865. Epub 2022 Oct 3.
2
Versatile Technique to Produce a Hierarchical Design in Nanoporous Gold.
J Vis Exp. 2023 Feb 10(192). doi: 10.3791/65065.
3
Fabrication of stratified nanoporous gold for enhanced biosensing.
Biosens Bioelectron. 2012 May 15;35(1):349-354. doi: 10.1016/j.bios.2012.03.015. Epub 2012 Mar 18.
4
A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys.
Nanotechnology. 2014 Nov 7;25(44):445602. doi: 10.1088/0957-4484/25/44/445602. Epub 2014 Oct 17.
5
6
An overview of dealloyed nanoporous gold in bioelectrochemistry.
Bioelectrochemistry. 2016 Jun;109:117-26. doi: 10.1016/j.bioelechem.2015.12.008. Epub 2015 Dec 31.
8
Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps.
Nanotechnology. 2015 Feb 27;26(8):085602. doi: 10.1088/0957-4484/26/8/085602. Epub 2015 Feb 4.
9
Breaking Down SERS Detection Limit: Engineering of a Nanoporous Platform for High Sensing and Technology.
Nanomaterials (Basel). 2022 May 19;12(10):1737. doi: 10.3390/nano12101737.
10
Silver UPD ultra-thin film modified nanoporous gold electrode with applications in the electrochemical detection of chloride.
Talanta. 2009 Mar 15;77(5):1694-700. doi: 10.1016/j.talanta.2008.10.005. Epub 2008 Oct 17.

引用本文的文献

1
Aspects of Electrochemical Biosensors Using Affinity Assays.
Biosensors (Basel). 2025 Mar 4;15(3):166. doi: 10.3390/bios15030166.

本文引用的文献

1
Self-template formation of porous CoO hollow nanoprisms for non-enzymatic glucose sensing in human serum.
RSC Adv. 2020 Oct 19;10(63):38369-38377. doi: 10.1039/d0ra06453j. eCollection 2020 Oct 15.
4
Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis.
ACS Nano. 2021 Apr 27;15(4):6038-6060. doi: 10.1021/acsnano.0c10945. Epub 2021 Apr 2.
5
Quantitative Effects of Disorder on Chemically Modified Amorphous Carbon Electrodes.
ACS Appl Energy Mater. 2020 Aug 24;3(8):8038-8047. doi: 10.1021/acsaem.0c01434. Epub 2020 Jul 27.
6
Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications.
MRS Bull. 2018 Jan;43(1):49-56. doi: 10.1557/mrs.2017.298. Epub 2018 Jan 10.
7
Porous Gold: A New Frontier for Enzyme-Based Electrodes.
Nanomaterials (Basel). 2020 Apr 10;10(4):722. doi: 10.3390/nano10040722.
8
One Dimensional AuAg Nanostructures as Anodic Catalysts in the Ethylene Glycol Oxidation.
Nanomaterials (Basel). 2020 Apr 10;10(4):719. doi: 10.3390/nano10040719.
9
Fetuin-A adsorption and stabilization of calcium carbonate nanoparticles in a simulated body fluid.
J Mater Chem B. 2015 Aug 21;3(31):6411-6419. doi: 10.1039/c5tb00565e. Epub 2015 Jul 20.
10
Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO reduction.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5680-5685. doi: 10.1073/pnas.1918837117. Epub 2020 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验