Al-Alshaqi Mohammed, Rawat Danda B, Liu Chunmei
Department of Electrical Engineering and Computer Science, Howard University, Washington, DC 20059, USA.
Sensors (Basel). 2024 Sep 19;24(18):6062. doi: 10.3390/s24186062.
The proliferation of fake news across multiple modalities has emerged as a critical challenge in the modern information landscape, necessitating advanced detection methods. This study proposes a comprehensive framework for fake news detection integrating text, images, and videos using machine learning and deep learning techniques. The research employs a dual-phased methodology, first analyzing textual data using various classifiers, then developing a multimodal approach combining BERT for text analysis and a modified CNN for visual data. Experiments on the ISOT fake news dataset and MediaEval 2016 image verification corpus demonstrate the effectiveness of the proposed models. For textual data, the Random Forest classifier achieved 99% accuracy, outperforming other algorithms. The multimodal approach showed superior performance compared to baseline models, with a 3.1% accuracy improvement over existing multimodal techniques. This research contributes to the ongoing efforts to combat misinformation by providing a robust, adaptable framework for detecting fake news across different media formats, addressing the complexities of modern information dissemination and manipulation.
在现代信息环境中,多模态假新闻的泛滥已成为一项严峻挑战,因此需要先进的检测方法。本研究提出了一个使用机器学习和深度学习技术整合文本、图像和视频的假新闻检测综合框架。该研究采用双阶段方法,首先使用各种分类器分析文本数据,然后开发一种多模态方法,将用于文本分析的BERT和用于视觉数据的改进型卷积神经网络(CNN)相结合。在ISOT假新闻数据集和MediaEval 2016图像验证语料库上进行的实验证明了所提出模型的有效性。对于文本数据,随机森林分类器的准确率达到了99%,优于其他算法。与基线模型相比,多模态方法表现出卓越的性能,比现有的多模态技术准确率提高了3.1%。本研究通过提供一个强大、适应性强的框架来检测不同媒体格式的假新闻,应对现代信息传播和操纵的复杂性,为打击错误信息的持续努力做出了贡献。