Pillai Nisha, Ayoola Moses B, Nanduri Bindu, Rothrock Michael J, Ramkumar Mahalingam
Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA.
Geosystems Research Institute, Mississippi State University, MS 39762, USA.
Heliyon. 2022 Nov 7;8(11):e11331. doi: 10.1016/j.heliyon.2022.e11331. eCollection 2022 Nov.
Animal sourced foods including contaminated poultry meat and eggs contribute to human non-typhoidal salmonellosis, a foodborne zoonosis. Prevalence of in pastured poultry production systems can lead to contamination of the final product. Identification of farm practices that affect prevalence is critical for implementing control measures to ensure the safety of these products. In this study, we developed predictive models based predominantly on deep learning approaches to identify key pre-harvest management variables (using soil and feces samples) in pastured poultry farms that contribute to prevalence. Our ensemble approach utilizing five different machine learning techniques predicts that physicochemical parameters of the soil and feces (elements such as sodium (Na), zinc (Zn), potassium (K), copper (Cu)), electrical conductivity (EC), the number of years that the farms have been in use, and flock size significantly influence pre-harvest prevalence. Egg source, feed type, breed, and manganese (Mn) levels in the soil/feces are other important variables identified to contribute to prevalence on larger (≥3 flocks reared per year) farms, while pasture feed and soil carbon-to-nitrogen ratio are predicted to be important for smaller/hobby (<3 flocks reared per year) farms. Predictive models such as the ones described here are important for developing science-based control measures for to reduce the environmental, animal, and public health impacts from these types of poultry production systems.
包括受污染的禽肉和禽蛋在内的动物源食品会导致人类非伤寒沙门氏菌病,这是一种食源性人畜共患病。在放牧式家禽生产系统中沙门氏菌的流行会导致最终产品受到污染。识别影响沙门氏菌流行的养殖方式对于实施控制措施以确保这些产品的安全至关重要。在本研究中,我们主要基于深度学习方法开发了预测模型,以识别放牧式家禽养殖场中有助于沙门氏菌流行的关键收获前管理变量(使用土壤和粪便样本)。我们利用五种不同机器学习技术的集成方法预测,土壤和粪便的理化参数(如钠(Na)、锌(Zn)、钾(K)、铜(Cu)等元素)、电导率(EC)、养殖场使用年限以及鸡群规模会显著影响收获前沙门氏菌的流行率。鸡蛋来源、饲料类型、品种以及土壤/粪便中的锰(Mn)水平是在较大型(每年饲养≥3批鸡群)养殖场中确定的有助于沙门氏菌流行的其他重要变量,而对于较小规模/业余型(每年饲养<3批鸡群)养殖场,预计牧场饲料和土壤碳氮比很重要。此处所述的预测模型对于制定基于科学的沙门氏菌控制措施很重要,以减少这些类型家禽生产系统对环境、动物和公共健康的影响。