Suppr超能文献

锰的摄入可保护鼠伤寒沙门氏菌血清型 Typhimurium 免受硝化应激。

Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress.

机构信息

Rhodes College Biology Department, 2000 North Parkway, Memphis, TN 38112, USA.

出版信息

Metallomics. 2020 Nov 1;12(11):1791-1801. doi: 10.1039/d0mt00178c. Epub 2020 Oct 20.

Abstract

Nitric oxide (NO˙) is a radical molecule produced by mammalian phagocytic cells as part of the innate immune response to bacterial pathogens. It exerts its antimicrobial activity in part by impairing the function of metalloproteins, particularly those containing iron and zinc cofactors. The pathogenic Gram-negative bacterium Salmonella enterica serovar typhimurium undergoes dynamic changes in its cellular content of the four most common metal cofactors following exposure to NO˙ stress. Zinc, iron and magnesium all decrease in response to NO˙ while cellular manganese increases significantly. Manganese acquisition is driven primarily by increased expression of the mntH and sitABCD transporters following derepression of MntR and Fur. ZupT also contributes to manganese acquisition in response to nitrosative stress. S. Typhimurium mutants lacking manganese importers are more sensitive to NO˙, indicating that manganese is important for resistance to nitrosative stress.

摘要

一氧化氮(NO˙)是哺乳动物吞噬细胞产生的一种自由基分子,作为先天免疫反应的一部分,对细菌病原体产生作用。它通过损害金属蛋白酶的功能来发挥其抗菌活性,特别是那些含有铁和锌辅因子的蛋白酶。致病性革兰氏阴性细菌鼠伤寒沙门氏菌在暴露于 NO˙应激后,其细胞内四种最常见金属辅因子的含量会发生动态变化。锌、铁和镁都因 NO˙而减少,而细胞内锰的含量则显著增加。锰的获取主要是由于 MntR 和 Fur 去阻遏后 mntH 和 sitABCD 转运体的表达增加所致。ZupT 也有助于对硝化应激的锰获取。缺乏锰转运体的鼠伤寒沙门氏菌突变体对 NO˙更敏感,表明锰对抵抗硝化应激很重要。

相似文献

1
Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress.
Metallomics. 2020 Nov 1;12(11):1791-1801. doi: 10.1039/d0mt00178c. Epub 2020 Oct 20.
3
Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium.
J Microbiol. 2023 Mar;61(3):289-296. doi: 10.1007/s12275-023-00027-7. Epub 2023 Mar 2.
4
The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium.
Mol Microbiol. 2010 Nov;78(3):669-85. doi: 10.1111/j.1365-2958.2010.07357.x. Epub 2010 Sep 16.
6
SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar Typhimurium.
J Bacteriol. 2002 Jun;184(12):3159-66. doi: 10.1128/JB.184.12.3159-3166.2002.
9
Transcriptional regulation of sitABCD of Salmonella enterica serovar Typhimurium by MntR and Fur.
J Bacteriol. 2005 Feb;187(3):912-22. doi: 10.1128/JB.187.3.912-922.2005.
10
Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H(2)O(2), Fe(2+), and Mn(2+).
J Bacteriol. 2002 Jun;184(12):3151-8. doi: 10.1128/JB.184.12.3151-3158.2002.

引用本文的文献

1
Comparative genomic analysis of metal-tolerant bacteria reveals significant differences in metal adaptation strategies.
Microbiol Spectr. 2025 Jun 3;13(6):e0168024. doi: 10.1128/spectrum.01680-24. Epub 2025 Apr 24.
2
The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence.
Braz J Microbiol. 2024 Dec;55(4):3769-3780. doi: 10.1007/s42770-024-01506-8. Epub 2024 Sep 4.
3
Metalloproteome plasticity - a factor in bacterial pathogen adaptive responses?
Emerg Top Life Sci. 2024 Feb 22;8(1):57-60. doi: 10.1042/ETLS20230116.
4
Manganese transporters regulate the resumption of replication in hydrogen peroxide-stressed Escherichia coli.
Biometals. 2023 Dec;36(6):1361-1376. doi: 10.1007/s10534-023-00523-8. Epub 2023 Jul 26.
5
Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium.
J Microbiol. 2023 Mar;61(3):289-296. doi: 10.1007/s12275-023-00027-7. Epub 2023 Mar 2.
6
An ensemble learning approach to identify pastured poultry farm practice variables and soil constituents that promote prevalence.
Heliyon. 2022 Nov 7;8(11):e11331. doi: 10.1016/j.heliyon.2022.e11331. eCollection 2022 Nov.
7
Nramp: Deprive and conquer?
Front Cell Dev Biol. 2022 Oct 13;10:988866. doi: 10.3389/fcell.2022.988866. eCollection 2022.
8
Regulation of Bacterial Manganese Homeostasis and Usage During Stress Responses and Pathogenesis.
Front Mol Biosci. 2022 Jul 15;9:945724. doi: 10.3389/fmolb.2022.945724. eCollection 2022.
9
Manganese Utilization in Pathogenesis: Beyond the Canonical Antioxidant Response.
Front Cell Dev Biol. 2022 Jul 12;10:924925. doi: 10.3389/fcell.2022.924925. eCollection 2022.

本文引用的文献

2
Bacterial sensors define intracellular free energies for correct enzyme metalation.
Nat Chem Biol. 2019 Mar;15(3):241-249. doi: 10.1038/s41589-018-0211-4. Epub 2019 Jan 28.
4
Nitric Oxide Disrupts Zinc Homeostasis in Salmonella enterica Serovar Typhimurium.
mBio. 2018 Aug 14;9(4):e01040-18. doi: 10.1128/mBio.01040-18.
5
Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence.
Cell Host Microbe. 2018 May 9;23(5):594-606.e7. doi: 10.1016/j.chom.2018.04.001.
6
Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress.
mBio. 2018 Feb 27;9(1):e00211-18. doi: 10.1128/mBio.00211-18.
7
Biochemistry of Peroxynitrite and Protein Tyrosine Nitration.
Chem Rev. 2018 Feb 14;118(3):1338-1408. doi: 10.1021/acs.chemrev.7b00568. Epub 2018 Feb 5.
8
Magnesium homeostasis protects Salmonella against nitrooxidative stress.
Sci Rep. 2017 Nov 8;7(1):15083. doi: 10.1038/s41598-017-15445-y.
9
The Two-Component System ArlRS and Alterations in Metabolism Enable Staphylococcus aureus to Resist Calprotectin-Induced Manganese Starvation.
PLoS Pathog. 2016 Nov 30;12(11):e1006040. doi: 10.1371/journal.ppat.1006040. eCollection 2016 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验