Suppr超能文献

多组学推断年轻黑人和白人乳腺癌患者间差异相关转录调控网络基因枢纽

Multi-omics inference of differential breast cancer-related transcriptional regulatory network gene hubs between young Black and White patients.

机构信息

Institute for Systems Biology, Seattle, WA, USA.

Pancreatic Cancer Action Network, Manhattan Beach, CA USA.

出版信息

Cancer Genet. 2023 Jan;270-271:1-11. doi: 10.1016/j.cancergen.2022.11.001. Epub 2022 Nov 7.

Abstract

OBJECTIVE

Breast cancers (BrCA) are a leading cause of illness and mortality worldwide. Black women have a higher incidence rate relative to white women prior to age 40 years, and a lower incidence rate after 50 years. The objective of this study is to identify -omics differences between the two breast cancer cohorts to better understand the disparities observed in patient outcomes.

MATERIALS AND METHODS

Using Standard SQL, we queried ISB-CGC hosted Google BigQuery tables storing TCGA BrCA gene expression, methylation, and somatic mutation data and analyzed the combined multi-omics results using a variety of methods.

RESULTS

Among Stage II patients 50 years or younger, genes PIK3CA and CDH1 are more frequently mutated in White (W50) than in Black or African American patients (BAA50), while HUWE1, HYDIN, and FBXW7 mutations are more frequent in BAA50. Over-representation analysis (ORA) and Gene Set Enrichment Analysis (GSEA) results indicate that, among others, the Reactome Signaling by ROBO Receptors gene set is enriched in BAA50. Using the Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER) algorithm, putative top 20 master regulators identified include NUPR1, NFKBIL1, ZBTB17, TEAD1, EP300, TRAF6, CACTIN, and MID2. CACTIN and MID2 are of prognostic value. We identified driver genes, such as OTUB1, with suppressed expression whose DNA methylation status were inversely correlated with gene expression. Networks capturing microRNA and gene expression correlations identified notable microRNA hubs, such as miR-93 and miR-92a-2, expressed at higher levels in BAA50 than in W50.

DISCUSSION/CONCLUSION: The results point to several driver genes as being involved in the observed differences between the cohorts. The findings here form the basis for further mechanistic exploration.

摘要

目的

乳腺癌(BrCA)是全球导致疾病和死亡的主要原因。黑人女性在 40 岁之前的发病率高于白人女性,而在 50 岁之后的发病率则低于白人女性。本研究的目的是确定两个乳腺癌队列之间的组学差异,以更好地了解观察到的患者结局差异。

材料与方法

使用标准 SQL,我们查询了存储 TCGA BrCA 基因表达、甲基化和体细胞突变数据的 ISB-CGC 托管的 Google BigQuery 表,并使用多种方法分析了组合多组学结果。

结果

在 50 岁或以下的 II 期患者中,PIK3CA 和 CDH1 基因在白人(W50)中比在黑人或非裔美国人(BAA50)中更频繁发生突变,而 HUWE1、HYDIN 和 FBXW7 突变在 BAA50 中更为常见。过度表达分析(ORA)和基因集富集分析(GSEA)结果表明,在其他基因中,Reactome 信号通过 ROBO 受体基因集在 BAA50 中富集。使用通过富集调节子的蛋白质活性虚拟推断(VIPER)算法,确定的前 20 个主要调节子包括 NUPR1、NFKBIL1、ZBTB17、TEAD1、EP300、TRAF6、CACTIN 和 MID2。CACTIN 和 MID2 具有预后价值。我们确定了表达受到抑制的驱动基因,如 OTUB1,其 DNA 甲基化状态与基因表达呈负相关。捕获 microRNA 和基因表达相关性的网络确定了显著的 microRNA 枢纽,如 miR-93 和 miR-92a-2,在 BAA50 中的表达水平高于 W50。

讨论/结论:结果表明,有几个驱动基因参与了队列之间观察到的差异。这些发现为进一步的机制探索奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验