Ji Min, Zhou Zhaoyu, Cao Wenhong, Ma Ningning, Xu Weigao, Tian Ye
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
Sci Adv. 2022 Nov 25;8(47):eadc9755. doi: 10.1126/sciadv.adc9755. Epub 2022 Nov 23.
DNA origami technology has rapidly developed into an ideal means to programmably crystallize nanoparticles. However, most existing DNA origami three-dimensional platforms normally used a single type of DNA origami unit, which greatly limits the types of nanoparticle superlattices that can be synthesized. Here, we report a universal strategy to vastly enrich the library of nanoparticle superlattices, based on multiple-unit (≥4 units) DNA origami platforms, which were constructed by programmably cocrystallizing three different DNA origami octahedral "homologs." Through selectively inserting nanoparticles into DNA origami monomers, numerous nanoparticle superlattices can be synthesized on the basis of the same platform. In this work, we obtained 85 types of DOF/AuNP (DNA origami frame/gold nanoparticle) superlattices using three different DNA origami platforms as examples. We believe that our strategy can provide possible access to fabricate virtually endless types of nanoparticle superlattices and promote the construction of functional materials with special properties.
DNA折纸技术已迅速发展成为一种可对纳米颗粒进行可编程结晶的理想方法。然而,大多数现有的DNA折纸三维平台通常使用单一类型的DNA折纸单元,这极大地限制了可合成的纳米颗粒超晶格的类型。在此,我们报告一种通用策略,基于多单元(≥4个单元)DNA折纸平台极大地丰富纳米颗粒超晶格库,该平台通过对三种不同的DNA折纸八面体“同系物”进行可编程共结晶构建而成。通过将纳米颗粒选择性地插入DNA折纸单体中,可在同一平台的基础上合成众多纳米颗粒超晶格。在这项工作中,我们以三种不同的DNA折纸平台为例,获得了85种DOF/AuNP(DNA折纸框架/金纳米颗粒)超晶格。我们相信,我们的策略能够为制造几乎无穷多种纳米颗粒超晶格提供可能途径,并推动具有特殊性质的功能材料的构建。