Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun. 2022 Nov 22;13(1):7163. doi: 10.1038/s41467-022-34968-1.
Polymer semiconductors are promising candidates for wearable and skin-like X-ray detectors due to their scalable manufacturing, adjustable molecular structures and intrinsic flexibility. Herein, we fabricated an intrinsically stretchable n-type polymer semiconductor through spatial nanoconfinement effect for ultrasensitive X-ray detectors. The design of high-orientation nanofiber structures and dense interpenetrating polymer networks enhanced the electron-transporting efficiency and stability of the polymer semiconductors. The resultant polymer semiconductors exhibited an ultrahigh sensitivity of 1.52 × 10 μC Gy cm, an ultralow detection limit of 37.7 nGy s (comparable to the record-low value of perovskite single crystals), and polymer film X-ray imaging was achieved at a low dose rate of 3.65 μGy s (about 1/12 dose rate of the commercial medical chest X-ray diagnosis). Meanwhile, the hybrid semiconductor films could sustain 100% biaxial stretching strain with minimal degeneracy in photoelectrical performances. These results provide insights into future high-performance, low-cost e-skin photoelectronic detectors and imaging.
聚合物半导体由于其可扩展的制造、可调的分子结构和固有柔韧性,是可穿戴和类似皮肤的 X 射线探测器的有前途的候选者。在此,我们通过空间纳米限制效应制造了一种本征可拉伸的 n 型聚合物半导体,用于超灵敏 X 射线探测器。高取向纳米纤维结构和密集互穿聚合物网络的设计提高了聚合物半导体的电子输运效率和稳定性。所得聚合物半导体表现出超高的灵敏度为 1.52×10 μC Gy cm,超低的检测极限为 37.7 nGy s(可与钙钛矿单晶的最低值相媲美),并且在低剂量率 3.65 μGy s(约为商业医用胸部 X 射线诊断的 1/12 剂量率)下实现了聚合物膜 X 射线成像。同时,混合半导体薄膜可以承受 100%的双轴拉伸应变,光电性能几乎没有退化。这些结果为未来高性能、低成本的电子皮肤光电探测器和成像提供了思路。