Yuan Haichao, Li Qi, Peng Ran, Wang Chuan, Xu Peng, Pan Xinxiang, Xu Minyi
Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Dalian Maritime University, Dalian 116026, China.
College of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
Micromachines (Basel). 2022 Nov 17;13(11):2005. doi: 10.3390/mi13112005.
Resonant frequency tracking control of electromagnetic acoustic transducers (EMATs) remains a challenge in terms of drifting working frequency and reduced conversion efficiency caused by working environment changes. This paper presents a fixed-time nonsingular integral terminal sliding mode (FT-NITSM) control strategy for resonant frequency tracking of EMATs to realize precise and high robustness resonant frequency tracking performance. Specifically, a FT-NITSM control method with fast convergence feature is developed and a resonant frequency tracking controller for EMATs is further designed to improve the convergence speed and tracking accuracy. Fixed time stability of the proposed frequency tracking control system is proved through Lyapunov function analysis. Moreover, numerical simulations demonstrate that the FT-NITSM control strategy can ensure precise tracking of the system's operating frequency to its natural resonant frequency in less than 3 s with a tracking error of less than 0.01 × 10 Hz. With the maximum overshoot variation between -20 and 20 and error range in -5 and 5° at the steady state, the FT-NITSM control strategy can ensure the control system impedance angle θ being consistent and eventually bounded. This study provides a toolbox for the resonant frequency tracking control and performance improvement of EMATs.
电磁超声换能器(EMATs)的谐振频率跟踪控制仍然是一个挑战,因为工作环境的变化会导致工作频率漂移和转换效率降低。本文提出了一种用于EMATs谐振频率跟踪的固定时间非奇异积分终端滑模(FT-NITSM)控制策略,以实现精确且高鲁棒性的谐振频率跟踪性能。具体而言,开发了一种具有快速收敛特性的FT-NITSM控制方法,并进一步设计了EMATs的谐振频率跟踪控制器,以提高收敛速度和跟踪精度。通过李雅普诺夫函数分析证明了所提出的频率跟踪控制系统的固定时间稳定性。此外,数值模拟表明,FT-NITSM控制策略能够在不到3 s的时间内确保系统工作频率精确跟踪其固有谐振频率,跟踪误差小于0.01×10 Hz。在稳态时,最大超调量变化在-20到20之间,误差范围在-5到5°之间,FT-NITSM控制策略能够确保控制系统阻抗角θ保持一致并最终有界。本研究为EMATs的谐振频率跟踪控制和性能提升提供了一个工具箱。