Suppr超能文献

改善 GAN 学习动力学以实现甲状腺结节分割。

Improving GAN Learning Dynamics for Thyroid Nodule Segmentation.

机构信息

Industrial Systems Engineering Department, Asian Institute of Technology, Pathumthani, Thailand.

Information and Communication Technologies, Asian Institute of Technology, Pathumthani, Thailand.

出版信息

Ultrasound Med Biol. 2023 Feb;49(2):416-430. doi: 10.1016/j.ultrasmedbio.2022.09.010. Epub 2022 Nov 21.

Abstract

Thyroid nodules are lesions requiring diagnosis and follow-up. Tools for detecting and segmenting nodules can help physicians with this diagnosis. Besides immediate diagnosis, automated tools can also enable tracking of the probability of malignancy over time. This paper demonstrates a new algorithm for segmenting thyroid nodules in ultrasound images. The algorithm combines traditional supervised semantic segmentation with unsupervised learning using GANs. The hybrid approach has the potential to upgrade the semantic segmentation model's performance, but GANs have the well-known problems of unstable learning and mode collapse. To stabilize the training of the GAN model, we introduce the concept of closed-loop control of the gain on the loss output of the discriminator. We find gain control leads to smoother generator training and avoids the mode collapse that typically occurs when the discriminator learns too quickly relative to the generator. We also find that the combination of the supervised and unsupervised learning styles encourages both low-level accuracy and high-level consistency. As a test of the concept of controlled hybrid supervised and unsupervised semantic segmentation, we introduce a new model named the StableSeg GAN. The model uses DeeplabV3+ as the generator, Resnet18 as the discriminator, and uses PID control to stabilize the GAN learning process. The performance of the new model in terms of IoU is better than DeeplabV3+, with mean IoU of 81.26% on a challenging test set. The results of our thyroid nodule segmentation experiments show that StableSeg GANs have flexibility to segment nodules more accurately than either comparable supervised segmentation models or uncontrolled GANs.

摘要

甲状腺结节是需要诊断和随访的病变。用于检测和分割结节的工具可以帮助医生进行诊断。除了即时诊断外,自动化工具还可以跟踪恶性肿瘤的概率随时间的变化。本文展示了一种新的用于超声图像中甲状腺结节分割的算法。该算法将传统的有监督语义分割与使用 GAN 的无监督学习相结合。混合方法有可能提升语义分割模型的性能,但 GAN 存在学习不稳定和模式崩溃等众所周知的问题。为了稳定 GAN 模型的训练,我们引入了在判别器损失输出上增益闭环控制的概念。我们发现增益控制导致生成器训练更加平滑,并避免了当判别器相对于生成器学习过快时通常会发生的模式崩溃。我们还发现,有监督和无监督学习风格的结合鼓励了低水平的准确性和高水平的一致性。作为对控制混合有监督和无监督语义分割概念的测试,我们引入了一个名为 StableSeg GAN 的新模型。该模型使用 DeeplabV3+作为生成器,Resnet18 作为判别器,并使用 PID 控制来稳定 GAN 的学习过程。新模型在 IoU 方面的性能优于 DeeplabV3+,在具有挑战性的测试集上的平均 IoU 为 81.26%。我们的甲状腺结节分割实验结果表明,StableSeg GAN 具有灵活性,可以比可比的有监督分割模型或无控制的 GAN 更准确地分割结节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验