Suppr超能文献

甲状腺结节的可解释自动化 TI-RADS 评估。

Explainable Automated TI-RADS Evaluation of Thyroid Nodules.

机构信息

Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA.

Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10400, Thailand.

出版信息

Sensors (Basel). 2023 Aug 21;23(16):7289. doi: 10.3390/s23167289.

Abstract

A thyroid nodule, a common abnormal growth within the thyroid gland, is often identified through ultrasound imaging of the neck. These growths may be solid- or fluid-filled, and their treatment is influenced by factors such as size and location. The Thyroid Imaging Reporting and Data System (TI-RADS) is a classification method that categorizes thyroid nodules into risk levels based on features such as size, echogenicity, margin, shape, and calcification. It guides clinicians in deciding whether a biopsy or other further evaluation is needed. Machine learning (ML) can complement TI-RADS classification, thereby improving the detection of malignant tumors. When combined with expert rules (TI-RADS) and explanations, ML models may uncover elements that TI-RADS misses, especially when TI-RADS training data are scarce. In this paper, we present an automated system for classifying thyroid nodules according to TI-RADS and assessing malignancy effectively. We use ResNet-101 and DenseNet-201 models to classify thyroid nodules according to TI-RADS and malignancy. By analyzing the models' last layer using the Grad-CAM algorithm, we demonstrate that these models can identify risk areas and detect nodule features relevant to the TI-RADS score. By integrating Grad-CAM results with feature probability calculations, we provide a precise heat map, visualizing specific features within the nodule and potentially assisting doctors in their assessments. Our experiments show that the utilization of ResNet-101 and DenseNet-201 models, in conjunction with Grad-CAM visualization analysis, improves TI-RADS classification accuracy by up to 10%. This enhancement, achieved through iterative analysis and re-training, underscores the potential of machine learning in advancing thyroid nodule diagnosis, offering a promising direction for further exploration and clinical application.

摘要

甲状腺结节是甲状腺内常见的异常生长物,通常通过颈部超声成像来识别。这些生长物可能是实性或液性的,其治疗方法受到大小和位置等因素的影响。甲状腺影像报告和数据系统(TI-RADS)是一种分类方法,根据大小、回声、边缘、形状和钙化等特征将甲状腺结节分为风险级别。它指导临床医生决定是否需要进行活检或其他进一步评估。机器学习(ML)可以补充 TI-RADS 分类,从而提高恶性肿瘤的检测能力。当与专家规则(TI-RADS)和解释相结合时,ML 模型可能会发现 TI-RADS 错过的元素,尤其是当 TI-RADS 训练数据稀缺时。在本文中,我们提出了一种根据 TI-RADS 自动分类甲状腺结节并有效评估恶性肿瘤的系统。我们使用 ResNet-101 和 DenseNet-201 模型根据 TI-RADS 和恶性肿瘤对甲状腺结节进行分类。通过使用 Grad-CAM 算法分析模型的最后一层,我们证明这些模型可以识别风险区域,并检测与 TI-RADS 评分相关的结节特征。通过将 Grad-CAM 结果与特征概率计算相结合,我们提供了一个精确的热图,可视化结节内的特定特征,并可能帮助医生进行评估。我们的实验表明,ResNet-101 和 DenseNet-201 模型的使用,结合 Grad-CAM 可视化分析,可将 TI-RADS 分类准确率提高高达 10%。通过迭代分析和重新训练实现的这种增强,突显了机器学习在推进甲状腺结节诊断方面的潜力,为进一步探索和临床应用提供了有前途的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f70/10459295/089c04b07d39/sensors-23-07289-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验