Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital, Sheffield, United Kingdom.
Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, United Kingdom.
Curr Protoc. 2022 Nov;2(11):e606. doi: 10.1002/cpz1.606.
Human pluripotent stem cells (hPSCs) can be grown in culture indefinitely, making them a valuable tool for use in basic biology, disease modeling, and regenerative medicine. However, over prolonged periods in culture, hPSCs tend to acquire genomic aberrations that confer growth advantages, similar to those seen in some cancers. Monitoring the genomic stability of cultured hPSCs is critical to ensuring their efficacy and safety as a therapeutic tool. Most commonly employed methods for monitoring of hPSC genomes are cytogenetic methods, such as G-banding. Nonetheless, such methods have limited resolution and sensitivity for detecting mosaicism. Single nucleotide polymorphism (SNP) array platforms are a potential alternative that could improve detection of abnormalities. Here, we outline protocols for SNP array whole-genome screening of hPSCs. Moreover, we detail the procedure for assessing the SNP array's sensitivity in detecting low-level mosaic copy-number changes. We show that mosaicism can be confidently identified in samples only once they contain 20% variants, although samples containing 10% variants typically display enough variation to warrant further investigation and confirmation, for example by using a more sensitive targeted method. Finally, we highlight the advantages and limitations of SNP arrays, including a cost comparison of SNP arrays versus other commonly employed methods for detection of genetic changes in hPSC cultures. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA sample preparation for SNP arrays Basic Protocol 2: SNP array hybridization, washing, and scanning Basic Protocol 3: SNP array data analysis Support Protocol: Assessment of SNP array sensitivity for detection of mosaicism.
人类多能干细胞(hPSCs)可以在培养中无限期生长,使其成为基础生物学、疾病建模和再生医学中非常有用的工具。然而,在培养中经过长时间后,hPSCs 往往会获得赋予生长优势的基因组异常,类似于某些癌症中观察到的情况。监测培养的 hPSCs 的基因组稳定性对于确保它们作为治疗工具的有效性和安全性至关重要。最常用于监测 hPSC 基因组的方法是细胞遗传学方法,例如 G 带。尽管如此,这些方法对于检测嵌合体的分辨率和灵敏度有限。单核苷酸多态性(SNP)阵列平台是一种潜在的替代方法,可以提高对异常的检测能力。在这里,我们概述了 SNP 阵列 hPSC 全基因组筛查的方案。此外,我们详细介绍了评估 SNP 阵列检测低水平嵌合体拷贝数变化的灵敏度的程序。我们表明,只有当样本中含有 20%的变异时,才能有信心识别嵌合体,尽管含有 10%变异的样本通常显示出足够的变化,需要进一步调查和确认,例如使用更敏感的靶向方法。最后,我们强调了 SNP 阵列的优点和局限性,包括 SNP 阵列与其他常用于检测 hPSC 培养物中遗传变化的方法的成本比较。© 2022 作者。Wiley 期刊出版公司出版的《当代协议》。基本方案 1:用于 SNP 阵列的 DNA 样品制备基本方案 2:SNP 阵列杂交、洗涤和扫描基本方案 3:SNP 阵列数据分析支持方案:评估 SNP 阵列检测嵌合体的灵敏度。