Suppr超能文献

从苏木精和伊红图像增强HER2乳腺癌多阶段分类性能的策略

Strategies for Enhancing the Multi-Stage Classification Performances of HER2 Breast Cancer from Hematoxylin and Eosin Images.

作者信息

Shovon Md Sakib Hossain, Islam Md Jahidul, Nabil Mohammed Nawshar Ali Khan, Molla Md Mohimen, Jony Akinul Islam, Mridha M F

机构信息

Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.

出版信息

Diagnostics (Basel). 2022 Nov 16;12(11):2825. doi: 10.3390/diagnostics12112825.

Abstract

Breast cancer is a significant health concern among women. Prompt diagnosis can diminish the mortality rate and direct patients to take steps for cancer treatment. Recently, deep learning has been employed to diagnose breast cancer in the context of digital pathology. To help in this area, a transfer learning-based model called 'HE-HER2Net' has been proposed to diagnose multiple stages of HER2 breast cancer (HER2-0, HER2-1+, HER2-2+, HER2-3+) on H&E (hematoxylin & eosin) images from the BCI dataset. HE-HER2Net is the modified version of the Xception model, which is additionally comprised of global average pooling, several batch normalization layers, dropout layers, and dense layers with a swish activation function. This proposed model exceeds all existing models in terms of accuracy (0.87), precision (0.88), recall (0.86), and AUC score (0.98) immensely. In addition, our proposed model has been explained through a class-discriminative localization technique using Grad-CAM to build trust and to make the model more transparent. Finally, nuclei segmentation has been performed through the StarDist method.

摘要

乳腺癌是女性健康的重大问题。及时诊断可以降低死亡率,并指导患者采取癌症治疗措施。最近,深度学习已被用于数字病理学背景下的乳腺癌诊断。为了在这一领域提供帮助,人们提出了一种基于迁移学习的模型“HE-HER2Net”,用于在来自BCI数据集的苏木精和伊红(H&E)图像上诊断HER2乳腺癌的多个阶段(HER2-0、HER2-1+、HER2-2+、HER2-3+)。HE-HER2Net是Xception模型的改进版本,它还包括全局平均池化、几个批量归一化层、随机失活层以及带有swish激活函数的全连接层。该模型在准确率(0.87)、精确率(0.88)、召回率(0.86)和AUC分数(0.98)方面大大超过了所有现有模型。此外,我们通过使用Grad-CAM的类判别定位技术对所提出的模型进行了解释,以建立信任并使模型更加透明。最后,通过StarDist方法进行了细胞核分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d171/9689487/535937087b94/diagnostics-12-02825-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验