Dutta Kaushik, Pal Debojyoti, Li Suya, Shyam Chandresh, Shoghi Kooresh I
Imaging Science Program, Washington University in St Louis, St Louis, MO USA.
Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO USA.
medRxiv. 2025 Apr 25:2025.04.22.25326227. doi: 10.1101/2025.04.22.25326227.
Human epidermal growth factor receptor 2 (HER2) expression is a critical biomarker for assessing breast cancer (BC) severity and guiding targeted anti-HER2 therapies. The standard method for measuring HER2 expression is manual assessment of IHC slides by pathologists, which is both time intensive and prone to inter- and intra-observer variability. To address these challenges, we developed an interpretable deep-learning pipeline with Correlational Attention Neural Network (Corr-A-Net) to predict HER2 score from H&E images. Each prediction was accompanied with a confidence score generated by the surrogate confidence score estimation network trained using incentivized mechanism. The shared correlated representations generated using the attention mechanism of Corr-A-Net achieved the best predictive accuracy of 0.93 and AUC-ROC of 0.98. Additionally, correlated representations demonstrated the highest mean effective confidence (MEC) score of 0.85 indicating robust confidence level estimation for prediction. The Corr-A-Net can have profound implications in facilitating prediction of HER2 status from H&E images.
人表皮生长因子受体2(HER2)表达是评估乳腺癌(BC)严重程度和指导抗HER2靶向治疗的关键生物标志物。测量HER2表达的标准方法是病理学家对免疫组化(IHC)玻片进行人工评估,这既耗时又容易出现观察者间和观察者内的差异。为应对这些挑战,我们开发了一种带有相关注意力神经网络(Corr-A-Net)的可解释深度学习管道,用于从苏木精-伊红(H&E)图像预测HER2评分。每次预测都伴随着由使用激励机制训练的替代置信度评分估计网络生成的置信度评分。使用Corr-A-Net的注意力机制生成的共享相关表示实现了0.93的最佳预测准确率和0.98的曲线下面积(AUC-ROC)。此外,相关表示显示出最高平均有效置信度(MEC)评分为0.85,表明对预测有稳健的置信度水平估计。Corr-A-Net在促进从H&E图像预测HER2状态方面可能具有深远意义。