Burelo Manuel, Gutiérrez Selena, Treviño-Quintanilla Cecilia D, Cruz-Morales Jorge A, Martínez Araceli, López-Morales Salvador
Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro 76146, Mexico.
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
Polymers (Basel). 2022 Nov 17;14(22):4973. doi: 10.3390/polym14224973.
Biobased hydroxyl-terminated polybutadiene (HTPB) was successfully synthesized in a one-pot reaction via metathesis degradation of industrial rubbers. Thus, polybutadiene (PB) and poly(styrene-butadiene-styrene) (SBS) were degraded via metathesis with high yields (>94%), using the fatty alcohol 10-undecen-1-ol as a chain transfer agent (CTA) and the second-generation Grubbs−Hoveyda catalyst. The identification of the hydroxyl groups (-OH) and the formation of biobased HTPB were verified by FT-IR and NMR. Likewise, the molecular weight and properties of the HTPB were controlled by changing the molar ratio of rubber to CTA ([C=C]/CTA) from 1:1 to 100:1, considering a constant molar ratio of the catalyst ([C=C]/Ru = 500:1). The number average molecular weight (Mn) ranged between 583 and 6580 g/mol and the decomposition temperatures between 134 and 220 °C. Moreover, the catalyst optimization study showed that at catalyst loadings as low as [C=C]/Ru = 5000:1, the theoretical molecular weight is in good agreement with the experimental molecular weight and the expected diols and polyols are formed. At higher ratios than those, the difference between theoretical and experimental molecular weight is wide, and there is no control over HTPB. Therefore, the rubber/CTA molar ratio and the amount of catalyst play an important role in PB degradation and HTPB synthesis. Biobased HTPB can be used to synthesize engineering design polymers, intermediates, fine chemicals, and in the polyurethane industry, and contribute to the development of environmentally friendly raw materials.
通过工业橡胶的复分解降解反应,在一锅法反应中成功合成了生物基端羟基聚丁二烯(HTPB)。因此,以脂肪醇10-十一碳烯-1-醇作为链转移剂(CTA),使用第二代格拉布-霍维达催化剂,聚丁二烯(PB)和苯乙烯-丁二烯-苯乙烯共聚物(SBS)通过复分解反应实现了高产率(>94%)的降解。通过傅里叶变换红外光谱(FT-IR)和核磁共振(NMR)对羟基(-OH)的鉴定以及生物基HTPB的形成进行了验证。同样,在催化剂摩尔比([C=C]/Ru = 500:1)恒定的情况下,通过将橡胶与CTA的摩尔比([C=C]/CTA)从1:1改变到100:1,对HTPB的分子量和性能进行了控制。数均分子量(Mn)在583至6580 g/mol之间,分解温度在134至220 °C之间。此外,催化剂优化研究表明,在催化剂负载量低至[C=C]/Ru = 5000:1时,理论分子量与实验分子量吻合良好,并且形成了预期的二醇和多元醇。当比例高于此值时,理论分子量与实验分子量之间的差异较大,且无法对HTPB进行控制。因此,橡胶/CTA摩尔比和催化剂用量在PB降解及HTPB合成过程中起着重要作用。生物基HTPB可用于合成工程设计聚合物、中间体、精细化学品,以及应用于聚氨酯工业,并有助于开发环境友好型原材料。