Suppr超能文献

基于 GeoHash 的车联网区块链区域交易快速查询方法

Geohash-Based Rapid Query Method of Regional Transactions in Blockchain for Internet of Vehicles.

机构信息

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

出版信息

Sensors (Basel). 2022 Nov 17;22(22):8885. doi: 10.3390/s22228885.

Abstract

Many researchers have introduced blockchain into the Internet of Vehicles (IoV) to support trading or other authentication applications between vehicles. However, the traditional blockchain cannot well support the query of transactions that occur in a specified area which is important for vehicle users since they are bound to the geolocations. Therefore, the querying efficiency of the geolocation attribute of transactions is vital for blockchain-based applications. Existing work does not well handle the geolocation of vehicles in the blockchain, and thus the querying efficiency is questionable. In this paper, we design a rapid query method of regional transactions in blockchain for IoV, including data structures and query algorithms. The main idea is to utilize the Geohash code to represent the area and serve as the key for transaction indexing and querying, and the geolocation is marked as one of the attributes of transactions in the blockchain. To further verify and evaluate the proposed design, on the basis of the implementation of Ethereum, which is a well-known blockchain, the results show that the proposed design achieves significantly better-querying speed than Ethereum.

摘要

许多研究人员已经将区块链引入车联网(IoV)中,以支持车辆之间的交易或其他身份验证应用。然而,传统的区块链不能很好地支持在指定区域内发生的交易的查询,因为这对车辆用户很重要,因为它们受地理位置限制。因此,交易地理位置属性的查询效率对基于区块链的应用至关重要。现有工作并没有很好地处理区块链中车辆的地理位置,因此查询效率值得怀疑。在本文中,我们为车联网设计了一种快速查询区块链中区域交易的方法,包括数据结构和查询算法。其主要思想是利用 Geohash 码来表示区域,并作为交易索引和查询的键,地理位置被标记为区块链中交易的属性之一。为了进一步验证和评估所提出的设计,在实现知名区块链 Ethereum 的基础上,结果表明,所提出的设计在查询速度方面比 Ethereum 有显著的提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3970/9693887/ba5907c14b49/sensors-22-08885-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验