文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 YOLOv4 的有轨电车自动驾驶目标检测性能研究。

A Study on Object Detection Performance of YOLOv4 for Autonomous Driving of Tram.

机构信息

School of Software Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea.

Department of Electrical and Computer Engineering, University of Sungkyunkwan, Seoul 16419, Republic of Korea.

出版信息

Sensors (Basel). 2022 Nov 21;22(22):9026. doi: 10.3390/s22229026.


DOI:10.3390/s22229026
PMID:36433622
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9696606/
Abstract

Recently, autonomous driving technology has been in the spotlight. However, autonomous driving is still in its infancy in the railway industry. In the case of railways, there are fewer control elements than autonomous driving of cars due to the characteristics of running on railways, but there is a disadvantage in that evasive maneuvers cannot be made in the event of a dangerous situation. In addition, when braking, it cannot be decelerated quickly for the weight of the body and the safety of the passengers. In the case of a tram, one of the railway systems, research has already been conducted on how to generate a profile that plans braking and acceleration as a base technology for autonomous driving, and to find the location coordinates of surrounding objects through object recognition. In pilot research about the tram's automated driving, YOLOv3 was used for object detection to find object coordinates. YOLOv3 is an artificial intelligence model that finds coordinates, sizes, and classes of objects in an image. YOLOv3 is the third upgrade of YOLO, which is one of the most famous object detection technologies based on CNN. YOLO's object detection performance is characterized by ordinary accuracy and fast speed. For this paper, we conducted a study to find out whether the object detection performance required for autonomous trams can be sufficiently implemented with the already developed object detection model. For this experiment, we used the YOLOv4 which is the fourth upgrade of YOLO.

摘要

最近,自动驾驶技术备受关注。然而,在铁路行业,自动驾驶仍处于起步阶段。在铁路方面,由于运行在铁路上的特点,控制元素比汽车自动驾驶要少,但缺点是在危险情况下无法进行回避操作。此外,在制动时,由于车身重量和乘客安全的原因,无法快速减速。在有轨电车等铁路系统中,已经研究了如何生成作为自动驾驶基础技术的制动和加速规划的轮廓,并通过物体识别找到周围物体的位置坐标。在有轨电车自动驾驶的试点研究中,使用了 YOLOv3 进行物体检测以找到物体坐标。YOLOv3 是一种人工智能模型,用于在图像中找到物体的坐标、大小和类别。YOLOv3 是 YOLO 的第三次升级,是基于 CNN 的最著名的物体检测技术之一。YOLO 的物体检测性能以普通精度和快速速度为特点。对于本文,我们进行了一项研究,以确定已经开发的物体检测模型是否可以充分实现自动驾驶有轨电车所需的物体检测性能。为此实验,我们使用了 YOLOv4,它是 YOLO 的第四次升级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/b3dac67eed7c/sensors-22-09026-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/227bde307f8a/sensors-22-09026-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/221f46b8c4f5/sensors-22-09026-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/01df8913ba7f/sensors-22-09026-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/4f4d5d398ca5/sensors-22-09026-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/338333898647/sensors-22-09026-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/01df62b12a79/sensors-22-09026-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/b3dac67eed7c/sensors-22-09026-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/227bde307f8a/sensors-22-09026-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/221f46b8c4f5/sensors-22-09026-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/01df8913ba7f/sensors-22-09026-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/4f4d5d398ca5/sensors-22-09026-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/338333898647/sensors-22-09026-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/01df62b12a79/sensors-22-09026-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9d/9696606/b3dac67eed7c/sensors-22-09026-g007.jpg

相似文献

[1]
A Study on Object Detection Performance of YOLOv4 for Autonomous Driving of Tram.

Sensors (Basel). 2022-11-21

[2]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[3]
An object detection algorithm combining self-attention and YOLOv4 in traffic scene.

PLoS One. 2023

[4]
A Real-Time Object Detector for Autonomous Vehicles Based on YOLOv4.

Comput Intell Neurosci. 2021

[5]
JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection.

Comput Intell Neurosci. 2021-4-1

[6]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[7]
Automatic recognition of parasitic products in stool examination using object detection approach.

PeerJ Comput Sci. 2022-8-17

[8]
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors (Basel). 2022-1-8

[9]
Deep Multimodal Detection in Reduced Visibility Using Thermal Depth Estimation for Autonomous Driving.

Sensors (Basel). 2022-7-6

[10]
VV-YOLO: A Vehicle View Object Detection Model Based on Improved YOLOv4.

Sensors (Basel). 2023-3-23

本文引用的文献

[1]
Real-Time Vehicle Classification and Tracking Using a Transfer Learning-Improved Deep Learning Network.

Sensors (Basel). 2022-5-18

[2]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索