文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Automatic recognition of parasitic products in stool examination using object detection approach.

作者信息

Naing Kaung Myat, Boonsang Siridech, Chuwongin Santhad, Kittichai Veerayuth, Tongloy Teerawat, Prommongkol Samrerng, Dekumyoy Paron, Watthanakulpanich Dorn

机构信息

Center of Industrial Robot and Automation (CiRA), College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

Department of Electrical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

出版信息

PeerJ Comput Sci. 2022 Aug 17;8:e1065. doi: 10.7717/peerj-cs.1065. eCollection 2022.


DOI:10.7717/peerj-cs.1065
PMID:36092001
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9455271/
Abstract

BACKGROUND: Object detection is a new artificial intelligence approach to morphological recognition and labeling parasitic pathogens. Due to the lack of equipment and trained personnel, artificial intelligence innovation for searching various parasitic products in stool examination will enable patients in remote areas of undeveloped countries to access diagnostic services. Because object detection is a developing approach that has been tested for its effectiveness in detecting intestinal parasitic objects such as protozoan cysts and helminthic eggs, it is suitable for use in rural areas where many factors supporting laboratory testing are still lacking. Based on the literatures, the YOLOv4-Tiny produces faster results and uses less memory with the support of low-end GPU devices. In comparison to the YOLOv3 and YOLOv3-Tiny models, this study aimed to propose an automated object detection approach, specifically the YOLOv4-Tiny model, for automatic recognition of intestinal parasitic products in stools. METHODS: To identify protozoan cysts and helminthic eggs in human feces, the three YOLO approaches; YOLOv4-Tiny, YOLOv3, and YOLOv3-Tiny, were trained to recognize 34 intestinal parasitic classes using training of image dataset. Feces were processed using a modified direct smear method adapted from the simple direct smear and the modified Kato-Katz methods. The image dataset was collected from intestinal parasitic objects discovered during stool examination and the three YOLO models were trained to recognize the image datasets. RESULTS: The non-maximum suppression technique and the threshold level were used to analyze the test dataset, yielding results of 96.25% precision and 95.08% sensitivity for YOLOv4-Tiny. Additionally, the YOLOv4-Tiny model had the best AUPRC performance of the three YOLO models, with a score of 0.963. CONCLUSION: This study, to our knowledge, was the first to detect protozoan cysts and helminthic eggs in the 34 classes of intestinal parasitic objects in human stools.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/d69c7b25a533/peerj-cs-08-1065-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/64d1cc75e1a0/peerj-cs-08-1065-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/16275188d187/peerj-cs-08-1065-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/69c72a24167a/peerj-cs-08-1065-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/2a753358a0bc/peerj-cs-08-1065-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/0553d0244acc/peerj-cs-08-1065-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/d5e0d5b23f63/peerj-cs-08-1065-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/fdd5f800b397/peerj-cs-08-1065-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/27d6a8410515/peerj-cs-08-1065-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/ee959ceb05d1/peerj-cs-08-1065-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/2dfad17a8ece/peerj-cs-08-1065-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/d69c7b25a533/peerj-cs-08-1065-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/64d1cc75e1a0/peerj-cs-08-1065-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/16275188d187/peerj-cs-08-1065-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/69c72a24167a/peerj-cs-08-1065-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/2a753358a0bc/peerj-cs-08-1065-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/0553d0244acc/peerj-cs-08-1065-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/d5e0d5b23f63/peerj-cs-08-1065-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/fdd5f800b397/peerj-cs-08-1065-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/27d6a8410515/peerj-cs-08-1065-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/ee959ceb05d1/peerj-cs-08-1065-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/2dfad17a8ece/peerj-cs-08-1065-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/9455271/d69c7b25a533/peerj-cs-08-1065-g011.jpg

相似文献

[1]
Automatic recognition of parasitic products in stool examination using object detection approach.

PeerJ Comput Sci. 2022-8-17

[2]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[3]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[4]
JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection.

Comput Intell Neurosci. 2021-4-1

[5]
Comparative analysis of computer vision algorithms for the real-time detection of digital dermatitis in dairy cows.

Prev Vet Med. 2024-8

[6]
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny.

Sensors (Basel). 2023-7-29

[7]
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting.

Front Plant Sci. 2022-10-25

[8]
Design of a Scalable and Fast YOLO for Edge-Computing Devices.

Sensors (Basel). 2020-11-27

[9]
GCS-YOLOV4-Tiny: A lightweight group convolution network for multi-stage fruit detection.

Math Biosci Eng. 2023-1

[10]
A Study on Object Detection Performance of YOLOv4 for Autonomous Driving of Tram.

Sensors (Basel). 2022-11-21

引用本文的文献

[1]
Performance validation of deep-learning-based approach in stool examination.

Parasit Vectors. 2025-8-1

[2]
Deep learning-based automated detection and multiclass classification of soil-transmitted helminths and Schistosoma mansoni eggs in fecal smear images.

Sci Rep. 2025-7-1

[3]
Real-Time American Sign Language Interpretation Using Deep Learning and Keypoint Tracking.

Sensors (Basel). 2025-3-28

[4]
ParasitoBank dataset for diagnosing intestinal parasitism: Helminths and protozoa in coprological samples.

Data Brief. 2025-1-8

[5]
Identification of veterinary and medically important blood parasites using contrastive loss-based self-supervised learning.

Vet World. 2024-11

[6]
Validation of Vetscan Imagyst, a diagnostic test utilizing an artificial intelligence deep learning algorithm, for detecting strongyles and Parascaris spp. in equine fecal samples.

Parasit Vectors. 2024-11-12

[7]
Effective Laboratory Diagnosis of Parasitic Infections of the Gastrointestinal Tract: Where, When, How, and What Should We Look For?

Diagnostics (Basel). 2024-9-27

[8]
Towards automatic farrowing monitoring-A Noisy Student approach for improving detection performance of newborn piglets.

PLoS One. 2024-10-2

[9]
Evaluation of alarm notification of artificial intelligence in automated analyzer detection of parasites.

Medicine (Baltimore). 2024-9-27

[10]
Development of a Machine Learning Model for the Classification of Egg.

J Imaging. 2024-8-28

本文引用的文献

[1]
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.

Proc IEEE Inst Electr Electron Eng. 2021-5

[2]
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors (Basel). 2022-1-8

[3]
Strawberry Maturity Recognition Algorithm Combining Dark Channel Enhancement and YOLOv5.

Sensors (Basel). 2022-1-6

[4]
Improved YOLOv4-tiny network for real-time electronic component detection.

Sci Rep. 2021-11-23

[5]
Deep learning approaches for challenging species and gender identification of mosquito vectors.

Sci Rep. 2021-3-1

[6]
Autonomous Vision-Based Primary Distribution Systems Porcelain Insulators Inspection Using UAVs.

Sensors (Basel). 2021-2-2

[7]
Tomato detection based on modified YOLOv3 framework.

Sci Rep. 2021-1-14

[8]
Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD.

Sensors (Basel). 2020-8-31

[9]
FecalNet: Automated detection of visible components in human feces using deep learning.

Med Phys. 2020-9

[10]
"Enterocytozoon bieneusi and Cryptosporidium: a cross-sectional study conducted throughout Thailand".

BMC Infect Dis. 2019-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索