Suppr超能文献

贝叶斯加性回归树模型在多元偏态响应中的应用。

Bayesian additive regression trees for multivariate skewed responses.

机构信息

Department of Statistics, Florida State University, Tallahassee, Florida.

Department of Statistics and Data Sciences, University of Texas at Austin, Austin, Texas.

出版信息

Stat Med. 2023 Feb 10;42(3):246-263. doi: 10.1002/sim.9613. Epub 2022 Nov 25.

Abstract

This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within-subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.

摘要

本文提出了一种使用贝叶斯加法回归树(BART)对单变量和多变量偏态响应进行非参数回归的方法。现有的 BART 方法使用决策树的集合来对均值函数进行建模,由于其预测精度高和易于使用,因此最近变得非常流行。然而,单变量高斯误差分布的通常假设在许多生物医学应用中是有限制的。受一项口腔健康研究的启发,我们提供了 BART 的一个有用扩展,即 skewBART 模型,以解决这个问题。然后,我们将 skewBART 扩展到允许多变量响应,在同一主题内的不同响应中共享与不同决策树相关的信息。该方法适用于个体内关联,并允许对不同的多变量响应使用不同的偏度参数。我们通过模拟研究和对具有双变量高度偏态响应的口腔健康数据集的应用,说明了我们的多元偏态 skewBART 提议相对于现有替代方案的优势。我们的方法可以通过 R 包 skewBART 实现,该包可在 GitHub 上获得。

相似文献

1
Bayesian additive regression trees for multivariate skewed responses.
Stat Med. 2023 Feb 10;42(3):246-263. doi: 10.1002/sim.9613. Epub 2022 Nov 25.
2
Semiparametric Bayesian latent variable regression for skewed multivariate data.
Biometrics. 2019 Jun;75(2):528-538. doi: 10.1111/biom.12989. Epub 2019 Mar 29.
3
Bayesian regression analysis of skewed tensor responses.
Biometrics. 2023 Sep;79(3):1814-1825. doi: 10.1111/biom.13743. Epub 2022 Sep 10.
4
Bayesian Additive Regression Trees (BART) with covariate adjusted borrowing in subgroup analyses.
J Biopharm Stat. 2022 Jul 4;32(4):613-626. doi: 10.1080/10543406.2022.2089160. Epub 2022 Jun 23.
6
Semiparametric mixed-scale models using shared Bayesian forests.
Biometrics. 2020 Mar;76(1):131-144. doi: 10.1111/biom.13107. Epub 2019 Nov 1.
7
A Bayesian nonparametric approach to causal inference on quantiles.
Biometrics. 2018 Sep;74(3):986-996. doi: 10.1111/biom.12863. Epub 2018 Feb 25.
8
Genome-wide prediction using Bayesian additive regression trees.
Genet Sel Evol. 2016 Jun 10;48(1):42. doi: 10.1186/s12711-016-0219-8.
9
Decision making and uncertainty quantification for individualized treatments using Bayesian Additive Regression Trees.
Stat Methods Med Res. 2019 Apr;28(4):1079-1093. doi: 10.1177/0962280217746191. Epub 2017 Dec 18.
10
Bayesian additive regression trees and the General BART model.
Stat Med. 2019 Nov 10;38(25):5048-5069. doi: 10.1002/sim.8347. Epub 2019 Aug 28.

引用本文的文献

1
Augmentation Samplers for Multinomial Probit Bayesian Additive Regression Trees.
J Comput Graph Stat. 2025 Jun;34(2):498-508. doi: 10.1080/10618600.2024.2388605. Epub 2024 Sep 24.
2
Bayesian additive tree ensembles for composite quantile regressions.
Stat Comput. 2025;35(6):175. doi: 10.1007/s11222-025-10711-w. Epub 2025 Aug 26.

本文引用的文献

2
Bayesian additive regression trees and the General BART model.
Stat Med. 2019 Nov 10;38(25):5048-5069. doi: 10.1002/sim.8347. Epub 2019 Aug 28.
3
Semiparametric mixed-scale models using shared Bayesian forests.
Biometrics. 2020 Mar;76(1):131-144. doi: 10.1111/biom.13107. Epub 2019 Nov 1.
4
Semiparametric Bayesian latent variable regression for skewed multivariate data.
Biometrics. 2019 Jun;75(2):528-538. doi: 10.1111/biom.12989. Epub 2019 Mar 29.
5
Nonparametric survival analysis using Bayesian Additive Regression Trees (BART).
Stat Med. 2016 Jul 20;35(16):2741-53. doi: 10.1002/sim.6893. Epub 2016 Feb 7.
7
A nonparametric spatial model for periodontal data with non-random missingness.
J Am Stat Assoc. 2013 Sep 1;108(503). doi: 10.1080/01621459.2013.795487.
8
Prevalence of periodontitis in adults in the United States: 2009 and 2010.
J Dent Res. 2012 Oct;91(10):914-20. doi: 10.1177/0022034512457373. Epub 2012 Aug 30.
9
Likelihood methods for binary responses of present components in a cluster.
Biometrics. 2011 Jun;67(2):629-35. doi: 10.1111/j.1541-0420.2010.01483.x. Epub 2010 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验