Suppr超能文献

基于贝叶斯加法回归树的个体化治疗的决策制定与不确定性量化。

Decision making and uncertainty quantification for individualized treatments using Bayesian Additive Regression Trees.

机构信息

1 Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA.

2 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA.

出版信息

Stat Methods Med Res. 2019 Apr;28(4):1079-1093. doi: 10.1177/0962280217746191. Epub 2017 Dec 18.

Abstract

Individualized treatment rules can improve health outcomes by recognizing that patients may respond differently to treatment and assigning therapy with the most desirable predicted outcome for each individual. Flexible and efficient prediction models are desired as a basis for such individualized treatment rules to handle potentially complex interactions between patient factors and treatment. Modern Bayesian semiparametric and nonparametric regression models provide an attractive avenue in this regard as these allow natural posterior uncertainty quantification of patient specific treatment decisions as well as the population wide value of the prediction-based individualized treatment rule. In addition, via the use of such models, inference is also available for the value of the optimal individualized treatment rules. We propose such an approach and implement it using Bayesian Additive Regression Trees as this model has been shown to perform well in fitting nonparametric regression functions to continuous and binary responses, even with many covariates. It is also computationally efficient for use in practice. With Bayesian Additive Regression Trees, we investigate a treatment strategy which utilizes individualized predictions of patient outcomes from Bayesian Additive Regression Trees models. Posterior distributions of patient outcomes under each treatment are used to assign the treatment that maximizes the expected posterior utility. We also describe how to approximate such a treatment policy with a clinically interpretable individualized treatment rule, and quantify its expected outcome. The proposed method performs very well in extensive simulation studies in comparison with several existing methods. We illustrate the usage of the proposed method to identify an individualized choice of conditioning regimen for patients undergoing hematopoietic cell transplantation and quantify the value of this method of choice in relation to the optimal individualized treatment rule as well as non-individualized treatment strategies.

摘要

个体化治疗规则可以通过认识到患者对治疗的反应可能不同,并为每个个体分配最理想的预测结果的治疗来改善健康结果。需要灵活高效的预测模型作为个体化治疗规则的基础,以处理患者因素和治疗之间潜在的复杂相互作用。现代贝叶斯半参数和非参数回归模型在这方面提供了一个有吸引力的途径,因为这些模型允许对患者特定治疗决策的自然后验不确定性进行量化,以及基于预测的个体化治疗规则在人群中的价值。此外,通过使用这些模型,还可以对最优个体化治疗规则的价值进行推断。我们提出了这样一种方法,并使用贝叶斯加性回归树来实现,因为该模型在拟合连续和二分类响应的非参数回归函数方面表现良好,即使有许多协变量。它在实践中也具有计算效率。我们使用贝叶斯加性回归树来研究一种利用贝叶斯加性回归树模型对患者结局进行个体化预测的治疗策略。使用每个治疗下的患者结局的后验分布来分配最大化期望后验效用的治疗。我们还描述了如何用一个临床可解释的个体化治疗规则来近似这样的治疗策略,并量化其预期结果。与几种现有的方法相比,该方法在广泛的模拟研究中表现非常出色。我们说明了如何使用所提出的方法为接受造血细胞移植的患者确定个体化的预处理方案,并量化这种选择方法相对于最优个体化治疗规则以及非个体化治疗策略的价值。

相似文献

1
Decision making and uncertainty quantification for individualized treatments using Bayesian Additive Regression Trees.
Stat Methods Med Res. 2019 Apr;28(4):1079-1093. doi: 10.1177/0962280217746191. Epub 2017 Dec 18.
3
Genome-wide prediction using Bayesian additive regression trees.
Genet Sel Evol. 2016 Jun 10;48(1):42. doi: 10.1186/s12711-016-0219-8.
4
Nonparametric survival analysis using Bayesian Additive Regression Trees (BART).
Stat Med. 2016 Jul 20;35(16):2741-53. doi: 10.1002/sim.6893. Epub 2016 Feb 7.
5
Dynamic Treatment Regimes Using Bayesian Additive Regression Trees for Censored Outcomes.
Lifetime Data Anal. 2024 Jan;30(1):181-212. doi: 10.1007/s10985-023-09605-8. Epub 2023 Sep 2.
6
Bayesian Additive Regression Trees (BART) with covariate adjusted borrowing in subgroup analyses.
J Biopharm Stat. 2022 Jul 4;32(4):613-626. doi: 10.1080/10543406.2022.2089160. Epub 2022 Jun 23.
8
Bayesian additive regression trees and the General BART model.
Stat Med. 2019 Nov 10;38(25):5048-5069. doi: 10.1002/sim.8347. Epub 2019 Aug 28.
9
Semiparametric Bayesian inference for optimal dynamic treatment regimes via dynamic marginal structural models.
Biostatistics. 2023 Jul 14;24(3):708-727. doi: 10.1093/biostatistics/kxac007.
10
Nonparametric competing risks analysis using Bayesian Additive Regression Trees.
Stat Methods Med Res. 2020 Jan;29(1):57-77. doi: 10.1177/0962280218822140. Epub 2019 Jan 7.

引用本文的文献

1
Sparse 2-stage Bayesian meta-analysis for individualized treatments.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf082.
2
Decoding uncertainty for clinical decision-making.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240207. doi: 10.1098/rsta.2024.0207.
3
Machine-learning approaches to predict individualized treatment effect using a randomized controlled trial.
Eur J Epidemiol. 2025 Feb;40(2):151-166. doi: 10.1007/s10654-024-01185-7. Epub 2025 Feb 13.
4
Learning optimal biomarker-guided treatment policy for chronic disorders.
Stat Med. 2024 Jun 30;43(14):2765-2782. doi: 10.1002/sim.10099. Epub 2024 May 3.
5
Variable selection for individualised treatment rules with discrete outcomes.
J R Stat Soc Ser C Appl Stat. 2023 Nov 2;73(2):298-313. doi: 10.1093/jrsssc/qlad096. eCollection 2024 Mar.
6
A new method for clustered survival data: Estimation of treatment effect heterogeneity and variable selection.
Biom J. 2024 Jan;66(1):e2200178. doi: 10.1002/bimj.202200178. Epub 2023 Dec 10.
7
Designing Optimal, Data-Driven Policies from Multisite Randomized Trials.
Psychometrika. 2023 Dec;88(4):1171-1196. doi: 10.1007/s11336-023-09937-2. Epub 2023 Oct 24.
8
Dynamic Treatment Regimes Using Bayesian Additive Regression Trees for Censored Outcomes.
Lifetime Data Anal. 2024 Jan;30(1):181-212. doi: 10.1007/s10985-023-09605-8. Epub 2023 Sep 2.
9
Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome.
Stat Biosci. 2023;15(2):397-418. doi: 10.1007/s12561-023-09370-0. Epub 2023 May 19.

本文引用的文献

1
Subgroup finding via Bayesian additive regression trees.
Stat Med. 2017 Jul 10;36(15):2391-2403. doi: 10.1002/sim.7276. Epub 2017 Mar 9.
2
Tree-based methods for individualized treatment regimes.
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.
3
4
Nonparametric survival analysis using Bayesian Additive Regression Trees (BART).
Stat Med. 2016 Jul 20;35(16):2741-53. doi: 10.1002/sim.6893. Epub 2016 Feb 7.
5
Using decision lists to construct interpretable and parsimonious treatment regimes.
Biometrics. 2015 Dec;71(4):895-904. doi: 10.1111/biom.12354. Epub 2015 Jul 20.
6
Regularized outcome weighted subgroup identification for differential treatment effects.
Biometrics. 2015 Sep;71(3):645-53. doi: 10.1111/biom.12322. Epub 2015 May 11.
7
Simple subgroup approximations to optimal treatment regimes from randomized clinical trial data.
Biostatistics. 2015 Apr;16(2):368-82. doi: 10.1093/biostatistics/kxu049. Epub 2014 Nov 13.
8
Combining biomarkers to optimize patient treatment recommendations.
Biometrics. 2014 Sep;70(3):695-707. doi: 10.1111/biom.12191. Epub 2014 May 30.
9
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
10
A robust method for estimating optimal treatment regimes.
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验