Suppr超能文献

社区卫生项目中基于语音通话和自动电话的面对面、语音通话和自动化电话式社会经济数据收集模式的性能和资源需求:系统评价。

Performance and Resource Requirements of In-Person, Voice Call, and Automated Telephone-Based Socioeconomic Data Collection Modalities for Community-Based Health Programs: A Systematic Review.

机构信息

International Centre for Eye Health, Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.

NHS Education for Scotland, Glasgow, United Kingdom.

出版信息

JAMA Netw Open. 2022 Nov 1;5(11):e2243883. doi: 10.1001/jamanetworkopen.2022.43883.

Abstract

IMPORTANCE

Gathering data on socioeconomic status (SES) is a prerequisite for health programs that aim to improve equity. There is a lack of evidence on which approaches offer the best combination of reliability, cost, and acceptability.

OBJECTIVE

To compare the performance of different approaches to gathering data on SES in community health programs.

DATA SOURCES

A search of the Cochrane Library, MEDLINE, Embase, Global Health, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, and OpenGrey from 1999 to June 29, 2021, was conducted, with no language limits. Google Scholar was also searched and the reference lists of included articles were checked to identify further studies. The search was performed on June 29, 2021.

STUDY SELECTION

Any empirical study design was eligible if it compared 2 or more modalities to elicit SES data from the following 3 categories: in-person, voice call, or automated telephone-based systems.

DATA EXTRACTION AND SYNTHESIS

Two reviewers independently screened titles, abstracts, and full-text articles and extracted data. They also assessed the risk of bias using Cochrane tools and assessed the certainty of the evidence using the Grading of Recommendations, Assessment, Development and Evaluation approach. Findings were synthesized thematically without meta-analysis.

MAIN OUTCOMES AND MEASURES

Response rate, equivalence, time, costs, and acceptability to patients and health care professionals.

RESULTS

The searches returned 3943 records. The 11 included studies reported data on 14 036 individuals from 7 countries, collecting data on 11 socioeconomic domains using 2 or more of the following modes: in-person surveys, computer-assisted telephone interviews (CATIs), and 2 types of automated data collection: interactive voice response calls (IVRs) and web surveys. Response rates were greater than 80% for all modes except IVRs. Equivalence was high across all modes (Cohen κ > 0.5). There were insufficient data to make robust time and cost comparisons. Patients reported high levels of acceptability providing data via IVRs, web surveys, and CATIs.

CONCLUSIONS AND RELEVANCE

Selecting an appropriate and cost-effective modality to elicit SES data is an important first step toward advancing equitable effective service coverage. This systematic review did not identify evidence that remote and automated data collection modes differed from human-led and in-person approaches in terms of reliability, cost, or acceptability.

摘要

重要性

收集社会经济地位 (SES) 数据是旨在提高公平性的健康计划的前提。目前缺乏关于哪种方法能提供最佳可靠性、成本和可接受性组合的证据。

目的

比较社区卫生计划中收集 SES 数据的不同方法的性能。

数据来源

对 Cochrane 图书馆、MEDLINE、Embase、全球卫生、ClinicalTrials.gov、世界卫生组织国际临床试验注册平台和 OpenGrey 进行了 1999 年至 2021 年 6 月 29 日的检索,无语言限制。还对 Google Scholar 进行了检索,并检查了纳入文章的参考文献列表,以确定进一步的研究。检索于 2021 年 6 月 29 日进行。

研究选择

如果比较了 2 种或多种模式以从以下 3 个类别中获取 SES 数据,则任何经验研究设计均符合条件:面对面、语音电话或基于自动电话的系统。

数据提取和综合

两名审查员独立筛选标题、摘要和全文文章,并提取数据。他们还使用 Cochrane 工具评估偏倚风险,并使用推荐评估、制定和评估方法评估证据的确定性。没有进行荟萃分析,而是通过主题合成来综合研究结果。

主要结果和措施

响应率、等效性、时间、成本以及患者和医疗保健专业人员的可接受性。

结果

检索返回了 3943 条记录。11 项纳入的研究报告了来自 7 个国家的 14036 个人的数据,使用以下 2 种或多种模式收集了 11 个社会经济领域的数据:面对面调查、计算机辅助电话访谈 (CATI) 和 2 种自动数据收集模式:交互式语音应答 (IVR) 和网络调查。除 IVR 外,所有模式的响应率均大于 80%。所有模式的等效性均很高(Cohen κ > 0.5)。没有足够的数据来进行稳健的时间和成本比较。患者报告说通过 IVR、网络调查和 CATI 提供数据的可接受性很高。

结论和相关性

选择适当且具有成本效益的模式来获取 SES 数据是朝着推进公平有效的服务覆盖范围迈出的重要第一步。本系统评价没有发现远程和自动化数据收集模式在可靠性、成本或可接受性方面与以人为中心和面对面的方法不同的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9c/9706363/6ae3194888dd/jamanetwopen-e2243883-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验