Department of Anesthesiology, Ube Industries Central Hospital, Ube, Yamaguchi, Japan.
PLoS One. 2022 Nov 28;17(11):e0278140. doi: 10.1371/journal.pone.0278140. eCollection 2022.
Hypotension is a risk factor for adverse perioperative outcomes. Preoperative transthoracic echocardiography has been extended for preoperative risk assessment before noncardiac surgery. This study aimed to develop a machine learning model to predict postinduction hypotension risk using preoperative echocardiographic data and compared it with conventional statistic models. We also aimed to identify preoperative echocardiographic factors that cause postinduction hypotension.
In this retrospective observational study, we extracted data from electronic health records of patients aged >18 years who underwent general anesthesia at a single tertiary care center between April 2014 and September 2019. Multiple supervised machine learning classification techniques were used, with postinduction hypotension (mean arterial pressure <55 mmHg from intubation to the start of the procedure) as the primary outcome and 95 transthoracic echocardiography measurements as factors influencing the primary outcome. Based on the mean cross-validation performance, we used 10-fold cross-validation with the training set (70%) to select the optimal hyperparameters and architecture, assessed ten times using a separate test set (30%).
Of 1,956 patients, 670 (34%) had postinduction hypotension. The area under the receiver operating characteristic curve using the deep neural network was 0.72 (95% confidence interval (CI) = 0.67-0.76), gradient boosting machine was 0.54 (95% CI = 0.51-0.59), linear discriminant analysis was 0.56 (95% CI = 0.51-0.61), and logistic regression was 0.56 (95% CI = 0.51-0.61). Variables of high importance included the ascending aorta diameter, transmitral flow A wave, heart rate, pulmonary venous flow S wave, tricuspid regurgitation pressure gradient, inferior vena cava expiratory diameter, fractional shortening, left ventricular mass index, and end-systolic volume.
We have created developing models that can predict postinduction hypotension using preoperative echocardiographic data, thereby demonstrating the feasibility of using machine learning models of preoperative echocardiographic data for produce higher accuracy than the conventional model.
低血压是围手术期不良结局的危险因素。术前经胸超声心动图已扩展用于非心脏手术术前风险评估。本研究旨在开发一种使用术前超声心动图数据预测诱导后低血压风险的机器学习模型,并与传统统计学模型进行比较。我们还旨在确定引起诱导后低血压的术前超声心动图因素。
在这项回顾性观察研究中,我们从 2014 年 4 月至 2019 年 9 月在一家三级保健中心接受全身麻醉的年龄>18 岁的患者的电子健康记录中提取数据。使用了多种有监督机器学习分类技术,以诱导后低血压(从插管到手术开始时平均动脉压<55mmHg)作为主要结局,95 项经胸超声心动图测量值作为影响主要结局的因素。根据平均交叉验证性能,我们使用训练集(70%)进行 10 倍交叉验证来选择最佳超参数和架构,并使用单独的测试集(30%)评估十次。
在 1956 名患者中,有 670 名(34%)发生诱导后低血压。使用深度神经网络的受试者工作特征曲线下面积为 0.72(95%置信区间[CI]:0.67-0.76),梯度提升机为 0.54(95%CI:0.51-0.59),线性判别分析为 0.56(95%CI:0.51-0.61),逻辑回归为 0.56(95%CI:0.51-0.61)。高重要性的变量包括升主动脉直径、二尖瓣血流 A 波、心率、肺静脉血流 S 波、三尖瓣反流压力梯度、下腔静脉呼气直径、射血分数、左心室质量指数和收缩末期容积。
我们已经创建了可以使用术前超声心动图数据预测诱导后低血压的开发模型,从而证明了使用术前超声心动图数据的机器学习模型可以产生比传统模型更高的准确性。