From the Department of Clinical Pharmacy & Pharmacology.
Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
Anesth Analg. 2020 May;130(5):1211-1221. doi: 10.1213/ANE.0000000000004651.
Brain monitors tracking quantitative brain activities from electroencephalogram (EEG) to predict hypnotic levels have been proposed as a labor-saving alternative to behavioral assessments. Expensive clinical trials are required to validate any newly developed processed EEG monitor for every drug and combinations of drugs due to drug-specific EEG patterns. There is a need for an alternative, efficient, and economical method.
Using deep learning algorithms, we developed a novel data-repurposing framework to predict hypnotic levels from sleep brain rhythms. We used an online large sleep data set (5723 clinical EEGs) for training the deep learning algorithm and a clinical trial hypnotic data set (30 EEGs) for testing during dexmedetomidine infusion. Model performance was evaluated using accuracy and the area under the receiver operator characteristic curve (AUC).
The deep learning model (a combination of a convolutional neural network and long short-term memory units) trained on sleep EEG predicted deep hypnotic level with an accuracy (95% confidence interval [CI]) = 81 (79.2-88.3)%, AUC (95% CI) = 0.89 (0.82-0.94) using dexmedetomidine as a prototype drug. We also demonstrate that EEG patterns during dexmedetomidine-induced deep hypnotic level are homologous to nonrapid eye movement stage 3 EEG sleep.
We propose a novel method to develop hypnotic level monitors using large sleep EEG data, deep learning, and a data-repurposing approach, and for optimizing such a system for monitoring any given individual. We provide a novel data-repurposing framework to predict hypnosis levels using sleep EEG, eliminating the need for new clinical trials to develop hypnosis level monitors.
从脑电图 (EEG) 中跟踪定量脑活动的脑监测器已被提出作为替代行为评估的省力方法,以预测催眠水平。由于药物特异性 EEG 模式,需要昂贵的临床试验来验证任何新开发的处理 EEG 监测器对于每种药物和药物组合。需要一种替代的、高效的和经济的方法。
我们使用深度学习算法,开发了一种新的数据再利用框架,从睡眠脑节律预测催眠水平。我们使用在线大型睡眠数据集(5723 例临床 EEG)对深度学习算法进行训练,并在右美托咪定输注期间使用临床试验催眠数据集(30 例 EEG)进行测试。使用准确性和接收器操作特征曲线下的面积 (AUC) 评估模型性能。
在睡眠 EEG 上训练的深度学习模型(卷积神经网络和长短期记忆单元的组合)使用右美托咪定为原型药物,预测深度催眠水平的准确性(95%置信区间[CI])为 81(79.2-88.3)%,AUC(95%CI)为 0.89(0.82-0.94)。我们还证明,在右美托咪定诱导的深度催眠水平期间的 EEG 模式与非快速眼动阶段 3 睡眠 EEG 同源。
我们提出了一种使用大型睡眠 EEG 数据、深度学习和数据再利用方法开发催眠水平监测器的新方法,并为优化该系统以监测任何给定个体提供了一种新的数据再利用框架。我们提供了一种使用睡眠 EEG 预测催眠水平的新的数据再利用框架,无需进行新的临床试验来开发催眠水平监测器。