Suppr超能文献

基质可利用性而非热驯化控制微生物对长期变暖的温度敏感性响应。

Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long-term warming.

机构信息

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA.

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.

出版信息

Glob Chang Biol. 2023 Mar;29(6):1574-1590. doi: 10.1111/gcb.16544. Epub 2022 Dec 14.

Abstract

Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-term warming, we sampled soils from 13- and 28-year-old soil warming experiments in different seasons. We performed short-term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally-induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-term warming effects on these soils.

摘要

微生物是土壤中碳(C)循环的主要驱动者,而气候变化下土壤 C 储量的预测变化对控制微生物对变暖响应的生理机制的变化高度敏感。有两种机制被认为可以解释长期变暖对微生物生理的影响:微生物热驯化和可用于微生物代谢的底物数量和质量的变化。然而,缺乏分离这两种机制的研究。为了解决长期变暖对微生物生理变化的驱动因素,我们在不同季节从 13 年和 28 年的土壤变暖实验中采集了土壤样本。我们在一系列温度下进行了短期实验室培养,以测量生理(生长、呼吸、碳利用效率和胞外酶活性)对土壤有机质化学组成的温度敏感性之间的关系。我们观察到微生物呼吸的明显热驯化,但仅在夏季观察到,此时变暖加剧了季节性诱导的、已经很小的溶解有机物质库。无论是否变暖,更多数量和质量的土壤碳增加了胞外酶库及其对温度的敏感性。我们提出,系统中新鲜凋落物的季节性输入抵消了碳循环过程对长达十年的变暖的明显热驯化。我们的研究结果表明,在这个系统中,长期变暖通过减少 C 的可用性间接影响了微生物生理,这意味着包括这些负反馈的地球系统模型可能最适合描述这些土壤的长期变暖效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验