Groetsch Alexander, Stelzl Samuel, Nagel Yannick, Kochetkova Tatiana, Scherrer Nadim C, Ovsianikov Aleksandr, Michler Johann, Pethö Laszlo, Siqueira Gilberto, Nyström Gustav, Schwiedrzik Jakob
Laboratory for Mechanics of Materials and Nanostructures Department of Advanced Materials and Surfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, 3602, Switzerland.
Research Group 3D Printing and Biofabrication Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria.
Small. 2023 Jan;19(3):e2202470. doi: 10.1002/smll.202202470. Epub 2022 Nov 30.
The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.
对功能材料的需求不断增加以及对可持续资源的有效利用,使得寻找新的材料体系成为一项日益艰巨的任务。在这方面,结构化(超)材料引起了人们极大的兴趣。然而,它们在微米和纳米尺度上的制造仍然是一个挑战,特别是对于具有高度不同相和未改性增强填料的复合材料。本研究表明,有可能制备一种由可持续相纤维素纳米晶体(CNC)增强的无细胞毒性纳米复合墨水,通过双光子聚合来打印和调整复杂的3D结构,从而推动在微观尺度上的知识进展。使用微压缩、高分辨率扫描电子显微镜、(偏振)拉曼光谱和复合材料建模来研究结构-性能关系。在CNC含量为4.5 wt%时,已经观察到刚度增加了100%,而纯聚合物和CNC复合材料的光聚合度都达到了约80%的高水平。偏振拉曼光谱和Halpin-Tsai复合材料模型表明,CNC在聚合物基体中呈随机取向。这种微观尺度的方法可用于调整具有可比特征尺寸的任意小尺度CNC增强聚合物复合材料。这些新见解为未来的应用铺平了道路,在这些应用中,小结构的3D打印对于提高组织支架的性能、扩展生物电子应用或定制微观尺度的能量吸收装置至关重要。