Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
Tunistrong Technologies Incorporated, 7207 Route 11, Wellington, Charlottetown, PE C0B 20E, Canada.
Int J Biol Macromol. 2024 Feb;258(Pt 1):128834. doi: 10.1016/j.ijbiomac.2023.128834. Epub 2023 Dec 19.
The escalating demand for sustainable materials has propelled cellulose into the spotlight as a promising alternative to petroleum-based products. As the most abundant organic polymer on Earth, cellulose is ubiquitous, found in plants, bacteria, and even a unique marine animal-the tunicate. Cellulose polymers naturally give rise to microscale semi-crystalline fibers and nanoscale crystalline regions known as cellulose nanocrystals (CNCs). Exhibiting rod-like structures with widths spanning 3 to 50 nm and lengths ranging from 50 nm to several microns, CNC characteristics vary based on the cellulose source. The degree of crystallinity, crucial for CNC properties, fluctuates between 49 and 95 % depending on the source and synthesis method. CNCs, with their exceptional properties such as high aspect ratio, relatively low density (≈1.6 g cm), high axial elastic modulus (≈150 GPa), significant tensile strength, and birefringence, emerge as ideal candidates for biodegradable fillers in nanocomposites and functional materials. The percolation threshold, a mathematical concept defining long-range connectivity between filler and polymer, governs the effectiveness of reinforcement in nanocomposites. This threshold is intricately influenced by the aspect ratio and molecular interaction strength, impacting CNC performance in polymeric and pure nanocomposite materials. This comprehensive review explores diverse aspects of CNCs, encompassing their derivation from various sources, methods of modification (both physical and chemical), and hybridization with heterogeneous fillers. Special attention is devoted to the hybridization of CNCs derived from tunicates (TCNC) with those from wood (WCNC), leveraging the distinct advantages of each. The overarching objective is to demonstrate how this hybridization strategy mitigates the limitations of WCNC in composite materials, offering improved interaction and enhanced percolation. This, in turn, is anticipated to elevate the reinforcing effects and pave the way for the development of nanocomposites with tunable viscoelastic, physicochemical, and mechanical properties.
对可持续材料需求的不断增长,使纤维素成为一种有前途的石油基产品替代品,受到广泛关注。作为地球上最丰富的有机聚合物,纤维素无处不在,存在于植物、细菌,甚至一种独特的海洋动物——被囊动物中。纤维素聚合物自然形成微尺度半结晶纤维和纳米尺度结晶区域,即纤维素纳米晶体(CNC)。CNC 具有棒状结构,宽度为 3 至 50nm,长度为 50nm 至数微米不等,其特性取决于纤维素来源。根据来源和合成方法的不同,结晶度(决定 CNC 特性的关键因素)在 49%至 95%之间波动。CNC 具有高纵横比、相对较低的密度(≈1.6gcm)、高轴向弹性模量(≈150GPa)、显著的拉伸强度和双折射等优异性能,是可生物降解纳米复合材料和功能材料中理想的填充剂。渗流阈值是一个数学概念,定义了填充剂和聚合物之间的长程连接,它控制着纳米复合材料增强的有效性。这个阈值受到比表面积和分子相互作用强度的复杂影响,这两个因素都对聚合物和纯纳米复合材料中 CNC 的性能有影响。本综述全面探讨了 CNC 的各个方面,包括其从各种来源的衍生、(物理和化学)改性方法以及与异质填充剂的杂交。特别关注了来自被囊动物(TCNC)和木材(WCNC)的 CNC 的杂交,利用了每种 CNC 的独特优势。总体目标是展示这种杂交策略如何减轻 WCNC 在复合材料中的局限性,提供更好的相互作用和增强的渗流。这反过来又有望提高增强效果,为开发具有可调节粘弹性、物理化学和机械性能的纳米复合材料铺平道路。