Suppr超能文献

基于物理信息的神经网络求解非线性扩散方程和 Biot 方程。

Physics-informed neural networks for solving nonlinear diffusivity and Biot's equations.

机构信息

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.

The Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Lyngby, Denmark.

出版信息

PLoS One. 2020 May 6;15(5):e0232683. doi: 10.1371/journal.pone.0232683. eCollection 2020.

Abstract

This paper presents the potential of applying physics-informed neural networks for solving nonlinear multiphysics problems, which are essential to many fields such as biomedical engineering, earthquake prediction, and underground energy harvesting. Specifically, we investigate how to extend the methodology of physics-informed neural networks to solve both the forward and inverse problems in relation to the nonlinear diffusivity and Biot's equations. We explore the accuracy of the physics-informed neural networks with different training example sizes and choices of hyperparameters. The impacts of the stochastic variations between various training realizations are also investigated. In the inverse case, we also study the effects of noisy measurements. Furthermore, we address the challenge of selecting the hyperparameters of the inverse model and illustrate how this challenge is linked to the hyperparameters selection performed for the forward one.

摘要

本文提出了应用物理信息神经网络解决非线性多物理问题的潜力,这对生物医学工程、地震预测和地下能量收集等许多领域都至关重要。具体而言,我们研究了如何将物理信息神经网络的方法扩展到解决与非线性扩散和 Biot 方程相关的正向和反向问题。我们探讨了不同训练示例大小和超参数选择对物理信息神经网络准确性的影响。还研究了各种训练实现之间随机变化的影响。在反向情况下,我们还研究了噪声测量的影响。此外,我们解决了选择反向模型超参数的挑战,并说明了这种挑战如何与正向模型的超参数选择相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7a/7202655/5368fd633bf3/pone.0232683.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验