Suppr超能文献

伊朗六个人口最多省份的道路交通死亡人数建模,2015-2016 年。

Modeling road traffic fatalities in Iran's six most populous provinces, 2015-2016.

机构信息

Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, 5167846311, East Azerbaijan, Islamic Republic of Iran.

Injury Epidemiology and Prevention Research Group, Turku Brain Injury Center, Turku University Hospital and the University of Turku, Turku, Finland.

出版信息

BMC Public Health. 2022 Nov 30;22(1):2234. doi: 10.1186/s12889-022-14678-5.

Abstract

BACKGROUND

Prevention of road traffic injuries (RTIs) as a critical public health issue requires coordinated efforts. We aimed to model influential factors related to traffic safety.

METHODS

In this cross-sectional study, the information from 384,614 observations recorded in Integrated Road Traffic Injury Registry System (IRTIRS) in a one-year period (March 2015-March 2016) was analyzed. All registered crashes from Tehran, Isfan, Fras, Razavi Khorasan, Khuzestan, and East Azerbaijan provinces, the six most populated provinces in Iran, were included in this study. The variables significantly associated with road traffic fatality in the uni-variate analysis were included in the multiple logistic regression.

RESULTS

According to the multiple logistic regression, thirty-two out of seventy-one different variables were identified to be significantly associated with road traffic fatality. The results showed that the crash scene significantly related factors were passenger presence(OR = 4.95, 95%CI = (4.54-5.40)), pedestrians presence(OR = 2.60, 95%CI = (1.75-3.86)), night-time crashes (OR = 1.64, 95%CI = (1.52-1.76)), rainy weather (OR = 1.32, 95%CI = (1.06-1.64)), no intersection control (OR = 1.40, 95%CI = (1.29-1.51)), double solid line(OR = 2.21, 95%CI = (1.31-3.74)), asphalt roads(OR = 1.95, 95%CI = (1.39-2.73)), nonresidential areas(OR = 2.15, 95%CI = (1.93-2.40)), vulnerable-user presence(OR = 1.70, 95%CI = (1.50-1.92)), human factor (OR = 1.13, 95%CI = (1.03-1.23)), multiple first causes (OR = 2.81, 95%CI = (2.04-3.87)), fatigue as prior cause(OR = 1.48, 95%CI = (1.27-1.72)), irregulation as direct cause(OR = 1.35, 95%CI = (1.20-1.51)), head-on collision(OR = 3.35, 95%CI = (2.85-3.93)), tourist destination(OR = 1.95, 95%CI = (1.69-2.24)), suburban areas(OR = 3.26, 95%CI = (2.65-4.01)), expressway(OR = 1.84, 95%CI = (1.59-2.13)), unpaved shoulders(OR = 1.84, 95%CI = (1.63-2.07)), unseparated roads (OR = 1.40, 95%CI = (1.26-1.56)), multiple road defects(OR = 2.00, 95%CI = (1.67-2.39)). In addition, the vehicle-connected factors were heavy vehicle (OR = 1.40, 95%CI = (1.26-1.56)), dark color (OR = 1.26, 95%CI = (1.17-1.35)), old vehicle(OR = 1.46, 95%CI = (1.27-1.67)), not personal-regional plaques(OR = 2.73, 95%CI = (2.42-3.08)), illegal maneuver(OR = 3.84, 95%CI = (2.72-5.43)). And, driver related factors were non-academic education (OR = 1.58, 95%CI = (1.33-1.88)), low income(OR = 2.48, 95%CI = (1.95-3.15)), old age (OR = 1.67, 95%CI = (1.44-1.94)), unlicensed driving(OR = 3.93, 95%CI = (2.51-6.15)), not-wearing seat belt (OR = 1.55, 95%CI = (1.44-1.67)), unconsciousness (OR = 1.67, 95%CI = (1.44-1.94)), driver misconduct(OR = 2.51, 95%CI = (2.29-2.76)).

CONCLUSION

This study reveals that driving behavior, infrastructure design, and geometric road factors must be considered to avoid fatal crashes. Our results found that the above-mentioned factors had higher odds of a deadly outcome than their counterparts. Generally, addressing risk factors and considering the odds ratios would be beneficial for policy makers and road safety stakeholders to provide support for compulsory interventions to reduce the severity of RTIs.

摘要

背景

预防道路交通伤害(RTI)作为一个关键的公共卫生问题,需要协调努力。我们旨在建立与交通安全相关的影响因素模型。

方法

在这项横断面研究中,对一年内(2015 年 3 月至 2016 年 3 月)综合道路交通伤害登记系统(IRTIRS)中 384614 次观察记录的信息进行了分析。伊朗六个人口最多的省份(德黑兰、伊斯法罕、法尔斯、北呼罗珊、胡齐斯坦和东阿塞拜疆)所有登记的撞车事故都包括在本研究中。单变量分析中与道路交通死亡显著相关的变量被纳入多变量逻辑回归。

结果

根据多变量逻辑回归,71 个不同变量中有 32 个被确定与道路交通死亡显著相关。结果表明,事故现场有显著影响的因素包括乘客存在(OR=4.95,95%CI=(4.54-5.40))、行人存在(OR=2.60,95%CI=(1.75-3.86))、夜间事故(OR=1.64,95%CI=(1.52-1.76))、雨天(OR=1.32,95%CI=(1.06-1.64))、无交叉口控制(OR=1.40,95%CI=(1.29-1.51))、双实线(OR=2.21,95%CI=(1.31-3.74))、柏油路(OR=1.95,95%CI=(1.39-2.73))、非住宅区(OR=2.15,95%CI=(1.93-2.40))、弱势用户存在(OR=1.70,95%CI=(1.50-1.92))、人为因素(OR=1.13,95%CI=(1.03-1.23))、多个首要原因(OR=2.81,95%CI=(2.04-3.87))、疲劳作为先前原因(OR=1.48,95%CI=(1.27-1.72))、违规作为直接原因(OR=1.35,95%CI=(1.20-1.51))、迎面相撞(OR=3.35,95%CI=(2.85-3.93))、旅游目的地(OR=1.95,95%CI=(1.69-2.24))、郊区(OR=3.26,95%CI=(2.65-4.01))、高速公路(OR=1.84,95%CI=(1.59-2.13))、未铺砌的路肩(OR=1.84,95%CI=(1.63-2.07))、未分离的道路(OR=1.40,95%CI=(1.26-1.56))、多个道路缺陷(OR=2.00,95%CI=(1.67-2.39))。此外,车辆相关因素包括重型车辆(OR=1.40,95%CI=(1.26-1.56))、深色(OR=1.26,95%CI=(1.17-1.35))、旧车(OR=1.46,95%CI=(1.27-1.67))、非个人-地区车牌(OR=2.73,95%CI=(2.42-3.08))、非法操作(OR=3.84,95%CI=(2.72-5.43))。并且,驾驶员相关因素包括非学术教育(OR=1.58,95%CI=(1.33-1.88))、低收入(OR=2.48,95%CI=(1.95-3.15))、高龄(OR=1.67,95%CI=(1.44-1.94))、无证驾驶(OR=3.93,95%CI=(2.51-6.15))、未系安全带(OR=1.55,95%CI=(1.44-1.67))、昏迷(OR=1.67,95%CI=(1.44-1.94))、驾驶员不当行为(OR=2.51,95%CI=(2.29-2.76))。

结论

本研究表明,驾驶行为、基础设施设计和几何道路因素必须考虑,以避免致命事故。我们的研究结果发现,与非致命事故相比,上述因素发生致命事故的可能性更高。总的来说,考虑风险因素并考虑优势比将有利于政策制定者和道路安全利益相关者提供支持,以减少道路交通伤害的严重程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验