Suppr超能文献

驾驶前搭载乘客和放松:年轻驾驶员生理激活的分类。

Carrying a passenger and relaxation before driving: Classification of young drivers' physiological activation.

机构信息

HumanTech Institute, University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland.

Haute-Ecole Arc Ingénierie, University of Applied Sciences and Arts of Western Switzerland, Saint-Imier, Switzerland.

出版信息

Physiol Rep. 2022 May;10(10):e15229. doi: 10.14814/phy2.15229.

Abstract

Drivers are often held responsible for road crashes. Previous research has shown that stressors such as carrying passengers in the vehicle can be a source of accidents for young drivers. To mitigate this problem, this study investigated whether the presence of a passenger behind the wheel can be predicted using machine learning, based on physiological signals. It also addresses the question whether relaxation before driving can positively influence the driver's state and help controlling the potential negative consequences of stressors. Sixty young participants completed a 10-min driving simulator session, either alone or with a passenger. Before their driving session, participants spent 10 min relaxing or listening to an audiobook. Physiological signals were recorded throughout the experiment. Results show that drivers experience a higher increase in skin conductance when driving with a passenger, which can be predicted with 90%-accuracy by a k-nearest neighbors classifier. This might be a possible explanation for increased risk taking in this age group. Besides, the practice of relaxation can be predicted with 80% accuracy using a neural network. According to the statistical analysis, the potential beneficial effect of relaxation did not carry out on the driver's physiological state while driving, although machine learning techniques revealed that participants who exercised relaxation before driving could be recognized with 70% accuracy. Analysis of physiological characteristics after classification revealed several relevant physiological indicators associated with the presence of a passenger and relaxation.

摘要

驾驶员通常对道路事故负有责任。先前的研究表明,在车内搭载乘客等压力源可能是年轻驾驶员发生事故的一个原因。为了解决这个问题,本研究基于生理信号,调查了是否可以使用机器学习来预测驾驶员身后是否有乘客。本研究还探讨了在驾驶前进行放松是否可以积极影响驾驶员的状态并有助于控制压力源的潜在负面影响。六十名年轻参与者在驾驶模拟器中完成了 10 分钟的驾驶模拟,其中一部分参与者独自驾驶,另一部分参与者在驾驶时有乘客陪同。在他们的驾驶模拟之前,参与者会花 10 分钟放松或听有声读物。在整个实验过程中记录了生理信号。结果表明,驾驶员在搭载乘客时皮肤电导率的增加幅度更高,使用 K 最近邻分类器可以以 90%的准确率预测这一变化。这可能是该年龄段风险承担增加的一个可能解释。此外,使用神经网络可以以 80%的准确率预测放松练习。根据统计分析,尽管机器学习技术显示,在驾驶前进行放松练习的参与者可以以 70%的准确率被识别,但放松练习对驾驶员生理状态的潜在有益效果并没有在驾驶过程中体现出来。对分类后的生理特征进行分析后,发现了一些与乘客和放松相关的相关生理指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abe/9115695/4a86dc520365/PHY2-10-e15229-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验