Suppr超能文献

模拟数据共享对变异分类的影响。

Modeling the impact of data sharing on variant classification.

作者信息

Casaletto James, Cline Melissa, Shirts Brian

机构信息

Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA.

Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.

出版信息

J Am Med Inform Assoc. 2023 Feb 16;30(3):466-474. doi: 10.1093/jamia/ocac232.

Abstract

OBJECTIVE

Many genetic variants are classified, but many more are variants of uncertain significance (VUS). Clinical observations of patients and their families may provide sufficient evidence to classify VUS. Understanding how long it takes to accumulate sufficient patient data to classify VUS can inform decisions in data sharing, disease management, and functional assay development.

MATERIALS AND METHODS

Our software models the accumulation of clinical evidence (and excludes all other types of evidence) to measure their unique impact on variant interpretation. We illustrate the time and probability for VUS classification when laboratories share evidence, when they silo evidence, and when they share only variant interpretations.

RESULTS

Using conservative assumptions for frequencies of observed clinical evidence, our models show the probability of classifying rare pathogenic variants with an allele frequency of 1/100 000 increases from less than 25% with no data sharing to nearly 80% after one year when labs share data, with nearly 100% classification after 5 years. Conversely, our models found that extremely rare (1/1 000 000) variants have a low probability of classification using only clinical data.

DISCUSSION

These results quantify the utility of data sharing and demonstrate the importance of alternative lines of evidence for interpreting rare variants. Understanding variant classification circumstances and timelines provides valuable insight for data owners, patients, and service providers. While our modeling parameters are based on our own assumptions of the rate of accumulation of clinical observations, users may download the software and run simulations with updated parameters.

CONCLUSIONS

The modeling software is available at https://github.com/BRCAChallenge/classification-timelines.

摘要

目的

许多基因变异已得到分类,但仍有更多变异的意义不明确(VUS)。对患者及其家族的临床观察可能会提供足够的证据来对VUS进行分类。了解积累足够的患者数据以对VUS进行分类需要多长时间,可为数据共享、疾病管理和功能测定开发方面的决策提供参考。

材料与方法

我们的软件模拟临床证据的积累情况(并排除所有其他类型的证据),以衡量它们对变异解读的独特影响。我们阐述了实验室共享证据、不共享证据以及仅共享变异解读时,VUS分类所需的时间和概率。

结果

基于对观察到的临床证据频率的保守假设,我们的模型显示,等位基因频率为1/100 000的罕见致病变异的分类概率,在无数据共享时低于25%,而在实验室共享数据一年后增至近80%,5年后几乎可达100%的分类率。相反,我们的模型发现,仅使用临床数据时,极其罕见(1/1 000 000)的变异分类概率很低。

讨论

这些结果量化了数据共享的效用,并证明了用于解读罕见变异的其他证据来源的重要性。了解变异分类情况和时间线可为数据所有者、患者及服务提供者提供有价值的见解。虽然我们的建模参数基于我们自己对临床观察积累速率的假设,但用户可以下载该软件并用更新后的参数运行模拟。

结论

建模软件可在https://github.com/BRCAChallenge/classification-timelines获取。

相似文献

1
Modeling the impact of data sharing on variant classification.模拟数据共享对变异分类的影响。
J Am Med Inform Assoc. 2023 Feb 16;30(3):466-474. doi: 10.1093/jamia/ocac232.

本文引用的文献

6
Realizing the potential of blockchain technologies in genomics.挖掘区块链技术在基因组学中的潜力。
Genome Res. 2018 Sep;28(9):1255-1263. doi: 10.1101/gr.207464.116. Epub 2018 Aug 3.
9
Variant Interpretation: Functional Assays to the Rescue.变异解读:功能测定来帮忙。
Am J Hum Genet. 2017 Sep 7;101(3):315-325. doi: 10.1016/j.ajhg.2017.07.014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验