文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation.

作者信息

Zhang Fuxue, Xia Bozhang, Sun Jiabei, Wang Yufei, Wang Jinjin, Xu Fengfei, Chen Junge, Lu Mei, Yao Xin, Timashev Peter, Zhang Yuanyuan, Chen Meiwan, Che Jing, Li Fangzhou, Liang Xing-Jie

机构信息

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China.

Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Research (Wash D C). 2022 Oct 31;2022:9808429. doi: 10.34133/2022/9808429. eCollection 2022.


DOI:10.34133/2022/9808429
PMID:36452433
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9680525/
Abstract

Intelligent drug delivery system based on "stimulus-response" mode emerging a promising perspective in next generation lipid-based nanoparticle. Here, we classify signal sources into physical and physiological stimulation according to their origin. The physical signals include temperature, ultrasound, and electromagnetic wave, while physiological signals involve pH, redox condition, and associated proteins. We first summarize external physical response from three main points about efficiency, particle state, and on-demand release. Afterwards, we describe how to design drug delivery using the physiological environment in vivo and present different current application methods. Lastly, we draw a vision of possible future development.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/aeb2848d2bb4/RESEARCH2022-9808429.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/ea63625b3571/RESEARCH2022-9808429.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/9c38d01ebbb7/RESEARCH2022-9808429.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/4329b77f2842/RESEARCH2022-9808429.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/d2e5cbb882b0/RESEARCH2022-9808429.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/27c0f23f5937/RESEARCH2022-9808429.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/1bdc66ba41f7/RESEARCH2022-9808429.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/cce8468e1f0f/RESEARCH2022-9808429.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/58bd3bd6edb8/RESEARCH2022-9808429.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/be9fd2c785fb/RESEARCH2022-9808429.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/aeb2848d2bb4/RESEARCH2022-9808429.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/ea63625b3571/RESEARCH2022-9808429.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/9c38d01ebbb7/RESEARCH2022-9808429.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/4329b77f2842/RESEARCH2022-9808429.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/d2e5cbb882b0/RESEARCH2022-9808429.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/27c0f23f5937/RESEARCH2022-9808429.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/1bdc66ba41f7/RESEARCH2022-9808429.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/cce8468e1f0f/RESEARCH2022-9808429.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/58bd3bd6edb8/RESEARCH2022-9808429.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/be9fd2c785fb/RESEARCH2022-9808429.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d2/9680525/aeb2848d2bb4/RESEARCH2022-9808429.010.jpg

相似文献

[1]
Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation.

Research (Wash D C). 2022-10-31

[2]
Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

Biomaterials. 2013-2-14

[3]
Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications.

Macromol Biosci. 2023-9

[4]
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).

Astrobiology. 2022-6

[5]
Stimuli-responsive Polymeric Nanosystems for Therapeutic Applications.

Curr Pharm Des. 2022

[6]
Investigation of Eutectic Mixtures of Fatty Acids as a Novel Construct for Temperature-Responsive Drug Delivery.

Int J Nanomedicine. 2022

[7]
Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review.

Int J Biol Macromol. 2023-2-1

[8]
A review of recent advances of cellulose-based intelligent-responsive hydrogels as vehicles for controllable drug delivery system.

Int J Biol Macromol. 2024-4

[9]
Research on a Simulation Method of the Millimeter Wave Radar Virtual Test Environment for Intelligent Driving.

Sensors (Basel). 2020-3-30

[10]
Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine.

Nanoscale Horiz. 2022-6-27

引用本文的文献

[1]
Bioengineered platelet nanoplatform enables renal-targeted dexamethasone delivery for chronic nephritis therapy with dual anti-inflammatory/anti-fibrotic effects and minimized systemic toxicity.

Bioact Mater. 2025-6-7

[2]
Reliable high-PAP-1-loaded polymeric micelles for cancer therapy: preparation, characterization, and evaluation of anti-tumor efficacy.

Drug Deliv. 2025-12

[3]
Oral delivery of therapeutic proteins by engineered bacterial type zero secretion system.

Nat Commun. 2025-2-21

[4]
Capturing the dynamic integrity of carbocyanine fluorophore-based lipid nanoparticles using the FRET technique.

J Mater Chem B. 2025-2-12

[5]
Antiferromagnetic artificial neuron modeling of the withdrawal reflex.

J Comput Neurosci. 2024-8

[6]
Thermal and Magnetic Dual-Responsive Catheter-Assisted Shape Memory Microrobots for Multistage Vascular Embolization.

Research (Wash D C). 2024-3-26

[7]
Progesterone receptor potentiates macropinocytosis through CDC42 in pancreatic ductal adenocarcinoma.

Oncogenesis. 2024-2-29

[8]
HIF2α Promotes Cancer Metastasis through TCF7L2-Dependent Fatty Acid Synthesis in ccRCC.

Research (Wash D C). 2024-2-22

本文引用的文献

[1]
Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment.

Exploration (Beijing). 2021-9-1

[2]
Mitochondria-specific nanocatalysts for chemotherapy-augmented sequential chemoreactive tumor therapy.

Exploration (Beijing). 2021-9-1

[3]
Carrier strategies boost the application of CRISPR/Cas system in gene therapy.

Exploration (Beijing). 2022-3-15

[4]
Ultrasound-controlled drug release and drug activation for cancer therapy.

Exploration (Beijing). 2021-12-28

[5]
Taking phototherapeutics from concept to clinical launch.

Nat Rev Chem. 2021-11

[6]
Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy.

Acta Pharmacol Sin. 2022-11

[7]
Physical & Chemical Microwave Ablation (MWA) Enabled by Nonionic MWA Nanosensitizers Repress Incomplete MWA-Arised Liver Tumor Recurrence.

ACS Nano. 2022-4-26

[8]
On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles.

Proc Natl Acad Sci U S A. 2021-12-28

[9]
Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes.

J Nanobiotechnology. 2021-12-4

[10]
Thrombin Based Photothermal-Responsive Nanoplatform for Tumor-Specific Embolization Therapy.

Small. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索