Suppr超能文献

小系统中的多体物理学:观测线性原子链中关联的起始与饱和

Many-Body Physics in Small Systems: Observing the Onset and Saturation of Correlation in Linear Atomic Chains.

作者信息

Townsend Emily, Neuman Tomáš, Debrecht Alex, Aizpurua Javier, Bryant Garnett

机构信息

Nanoscale Device Characterization Division and Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA.

University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev B. 2021 May 15;103(19). doi: 10.1103/physrevb.103.195429.

Abstract

The exact study of small systems can guide us toward relevant measures for extracting information about many-body physics as we move to larger and more complex systems capable of quantum information processing or quantum analog simulation. We use exact diagonalization to study many electrons in short 1-D atom chains represented by long-range extended Hubbard-like models. We introduce a novel measure, the Single-Particle Excitation Content (SPEC) of an eigenstate and show that the dependence of SPEC on eigenstate number reveals the nature of the ground state (ordered phases), and the onset and saturation of correlation between the electrons as Coulomb interaction strength increases. We use this SPEC behavior to identify five regimes as interaction is increased: a non-interacting single-particle regime, a regime of perturbative Coulomb interaction in which the SPEC is a nearly universal function of eigenstate number, the onset and saturation of correlation, a regime of fully correlated states in which hopping is a perturbation and SPEC is a different universal function of state number, and the regime of no hopping. In particular, the behavior of the SPEC shows that when electron-electron correlation plays a minor role, all of the lowest energy eigenstates are made up primarily of single-particle excitations of the ground state, and as the Coulomb interaction increases, the lowest energy eigenstates increasingly contain many-particle excitations. In addition, the SPEC highlights a fundamental, distinct difference between a non-interacting system and one with minute, very weak interactions. While SPEC is a quantity that can be calculated for small exactly diagonalizable systems, it guides our intuition for larger systems, suggesting the nature of excitations and their distribution in the spectrum. Thus, this function, like correlation functions or order parameters, provides us with a window of intuition about the behavior of a physical system.

摘要

对小系统的精确研究能够引导我们找到相关方法,以便在我们转向能够进行量子信息处理或量子模拟仿真的更大、更复杂系统时,提取有关多体物理的信息。我们使用精确对角化方法来研究由长程扩展哈伯德类模型表示的短一维原子链中的多个电子。我们引入了一种新的量度,即本征态的单粒子激发含量(SPEC),并表明SPEC对本征态数的依赖性揭示了基态(有序相)的性质,以及随着库仑相互作用强度增加电子之间相关性的起始和饱和情况。我们利用这种SPEC行为来确定随着相互作用增加的五个区域:非相互作用单粒子区域、微扰库仑相互作用区域(其中SPEC是本征态数的近乎通用的函数)、相关性的起始和饱和区域、完全相关态区域(其中跳跃是一种微扰且SPEC是态数的不同通用函数)以及无跳跃区域。特别地,SPEC的行为表明,当电子 - 电子相关性起次要作用时,所有最低能量本征态主要由基态的单粒子激发组成,并且随着库仑相互作用增加,最低能量本征态越来越多地包含多粒子激发。此外,SPEC突出了非相互作用系统与具有微小、非常弱相互作用的系统之间的一个基本的、明显的差异。虽然SPEC是一个可以为小的可精确对角化系统计算的量,但它为我们对更大系统的直觉提供了指导,暗示了激发的性质及其在能谱中的分布。因此,这个函数与关联函数或序参量一样,为我们提供了一个了解物理系统行为直觉的窗口。

相似文献

2
Approaching the quantum limit for plasmonics: linear atomic chains.
J Opt. 2016;18(7). doi: 10.1088/2040-8978/18/7/074001.
3
Manipulating Hubbard-type Coulomb blockade effect of metallic wires embedded in an insulator.
Natl Sci Rev. 2022 Oct 4;10(3):nwac210. doi: 10.1093/nsr/nwac210. eCollection 2023 Mar.
4
Exact Localized and Ballistic Eigenstates in Disordered Chaotic Spin Ladders and the Fermi-Hubbard Model.
Phys Rev Lett. 2019 Jul 19;123(3):036403. doi: 10.1103/PhysRevLett.123.036403.
5
Single-quasiparticle eigenstate thermalization.
Phys Rev E. 2024 Feb;109(2-1):024102. doi: 10.1103/PhysRevE.109.024102.
6
Toward a New Theory of the Fractional Quantum Hall Effect.
Nanomaterials (Basel). 2024 Jan 31;14(3):297. doi: 10.3390/nano14030297.
7
PT-symmetric, non-Hermitian quantum many-body physics-a methodological perspective.
Rep Prog Phys. 2023 Nov 16;86(12). doi: 10.1088/1361-6633/ad05f3.
8
Quantum coherence controls the nature of equilibration and thermalization in coupled chaotic systems.
Phys Rev E. 2023 Feb;107(2-1):024124. doi: 10.1103/PhysRevE.107.024124.
9
Exactly Solvable Model for Strongly Interacting Electrons in a Magnetic Field.
Phys Rev Lett. 2021 Apr 2;126(13):136601. doi: 10.1103/PhysRevLett.126.136601.
10
Eigenstate Entanglement: Crossover from the Ground State to Volume Laws.
Phys Rev Lett. 2021 Jul 23;127(4):040603. doi: 10.1103/PhysRevLett.127.040603.

引用本文的文献

1
Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas.
Nanophotonics. 2022 Jun 8;11(14):3281-3298. doi: 10.1515/nanoph-2022-0154. eCollection 2022 Jul.

本文引用的文献

1
Lieb-Robinson bounds on -partite connected correlation functions.
Phys Rev A (Coll Park). 2017;96. doi: 10.1103/PhysRevA.96.052334.
2
Ground states of long-range interacting fermions in one spatial dimension.
J Phys Condens Matter. 2019 Jun 26;31(25):255601. doi: 10.1088/1361-648X/ab0fcf. Epub 2019 Mar 14.
3
Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions.
Phys Rev Lett. 2017 Oct 27;119(17):170503. doi: 10.1103/PhysRevLett.119.170503. Epub 2017 Oct 25.
4
Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator.
Nature. 2017 Nov 29;551(7682):601-604. doi: 10.1038/nature24654.
5
Probing many-body dynamics on a 51-atom quantum simulator.
Nature. 2017 Nov 29;551(7682):579-584. doi: 10.1038/nature24622.
6
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Nature. 2017 Aug 2;548(7665):70-73. doi: 10.1038/nature23022.
7
Quantum spin dynamics and entanglement generation with hundreds of trapped ions.
Science. 2016 Jun 10;352(6291):1297-301. doi: 10.1126/science.aad9958.
8
Quantum simulation of the Hubbard model with dopant atoms in silicon.
Nat Commun. 2016 Apr 20;7:11342. doi: 10.1038/ncomms11342.
9
Physics in one dimension: theoretical concepts for quantum many-body systems.
J Phys Condens Matter. 2013 Jan 9;25(1):014001. doi: 10.1088/0953-8984/25/1/014001. Epub 2012 Dec 5.
10
Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 2):036206. doi: 10.1103/PhysRevE.81.036206. Epub 2010 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验