Suppr超能文献

修正与石墨烯纳米天线耦合的吸附原子中的量子光学现象。

Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas.

作者信息

Kosik Miriam, Müller Marvin M, Słowik Karolina, Bryant Garnett, Ayuela Andrés, Rockstuhl Carsten, Pelc Marta

机构信息

Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland.

Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany.

出版信息

Nanophotonics. 2022 Jun 8;11(14):3281-3298. doi: 10.1515/nanoph-2022-0154. eCollection 2022 Jul.

Abstract

Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes.

摘要

作为光子纳米天线的石墨烯薄片可能会维持强烈的电磁场局域化和增强。为了利用场增强效应,诸如原子或分子等量子发射体应放置在与薄片非常接近的位置,以至于电子隧穿可能会影响系统的光学和电子特性。然而,如果聚焦于量子发射体与纳米天线之间的光学耦合机制,通常不会考虑隧穿。这项工作提出了一个框架,用于描述由石墨烯纳米薄片组成的混合系统中的电子动力学,该系统在电子和光学上都与吸附原子耦合,并受到外部光照。我们的框架将单粒子紧束缚方法与捕获光学和电子相互作用的非线性主方程形式相结合。我们应用该框架来证明吸附原子与薄片之间的电子隧穿对标志性量子光学现象的影响:靠近三角形石墨烯纳米薄片的两能级吸附原子中相干拉比振荡的衰减和珀塞尔自发发射增强的猝灭。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/11501658/a25be4b65e0a/j_nanoph-2022-0154_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验