Suppr超能文献

中国八大经济区碳排放的时空演变分析与预测。

Analysis and prediction of the temporal and spatial evolution of carbon emissions in China's eight economic regions.

机构信息

Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China.

School of Management, China University of Mining & Technology (Beijing), Beijing, China.

出版信息

PLoS One. 2022 Dec 1;17(12):e0277906. doi: 10.1371/journal.pone.0277906. eCollection 2022.

Abstract

Facing increasingly severe environmental problems, as the largest developing country, achieving regional carbon emission reduction is the performance of China's fulfillment of the responsibility of a big government and the key to the smooth realization of the global carbon emission reduction goal. Since China's carbon emission data is updated slowly, in order to better formulate the corresponding emission reduction strategy, it is necessary to propose a more accurate carbon emission prediction model on the basis of fully analyzing the characteristics of carbon emissions at the provincial and regional levels. Given this, this paper first calculated the carbon emissions of eight economic regions in China from 2005 to 2019 according to relevant statistical data. Secondly, with the help of kernel density function, Theil index and decoupling index, the dynamic evolution characteristics of regional carbon emissions are discussed. Finally, an improved particle swarm optimization radial basis function (IPSO-RBF) neural network model is established to compare the simulation and prediction models of China's carbon emissions. The results show significant differences in carbon emissions in different regions, and the differences between high-value and low-value areas show an apparent expansion trend. The inter-regional carbon emission difference is the main factor in the overall carbon emission difference. The economic region in the middle Yellow River (ERMRYR) has the most considerable contribution to the national carbon emission difference, and the main contributors affecting the overall carbon emission difference in different regions are different. The number of regions with strong decoupling between carbon emissions and economic development is increasing in time series. The results of the carbon emission prediction model can be seen that IPSO-RBF neural network model optimizes the radial basis function (RBF) neural network, making the prediction result in a minor error and higher accuracy. Therefore, when exploring the path of carbon emission reduction in different regions in the future, the IPSO-RBF neural network model is more suitable for predicting carbon emissions and other relevant indicators, laying a foundation for putting forward more scientific and practical emission reduction plans.

摘要

面对日益严峻的环境问题,中国作为最大的发展中国家,实现区域碳排放减排既是中国履行大国责任的表现,也是顺利实现全球碳减排目标的关键。由于中国的碳排放数据更新缓慢,为了更好地制定相应的减排策略,有必要在充分分析省际和区域碳排放特征的基础上提出更准确的碳排放预测模型。鉴于此,本文首先根据相关统计数据计算了中国 2005-2019 年八大经济区域的碳排放量。其次,借助核密度函数、泰尔指数和脱钩指数探讨了区域碳排放的动态演变特征。最后,建立了改进的粒子群优化径向基函数(IPSO-RBF)神经网络模型,对中国碳排放量的模拟和预测模型进行了比较。结果表明,不同地区的碳排放存在显著差异,高低值地区之间的差异呈明显扩大趋势。区域间碳排放量差异是总碳排放量差异的主要因素。黄河中游经济区(ERMRYR)对全国碳排放量差异的贡献最大,不同地区影响总碳排放量差异的主要贡献者不同。碳排放量与经济发展强脱钩的地区数量呈时间序列递增。从碳排放量预测模型的结果可以看出,IPSO-RBF 神经网络模型优化了径向基函数(RBF)神经网络,使预测结果误差较小,精度较高。因此,在未来探索不同地区碳减排路径时,IPSO-RBF 神经网络模型更适合预测碳排放量等相关指标,为提出更科学、更实用的减排方案奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d5b/9714916/2d988146a9f8/pone.0277906.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验