Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York12180, United States.
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York12180, United States.
J Phys Chem B. 2022 Dec 22;126(50):10597-10607. doi: 10.1021/acs.jpcb.2c05498. Epub 2022 Dec 1.
Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by N-CEST analysis. Excited state N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.
鉴于构象动力学在蛋白质功能中的核心作用,描述与这些转变相关的时间尺度和结构至关重要。高压(HP)扰动有利于向激发态转变,因为它们通常占据较小的摩尔体积,从而便于描述构象动力学。重复蛋白具有简单的结构,是研究蛋白质构象动力学的序列依赖性的良好模型。通过 N CPMG 弛豫分散分析研究化学交换发现,在 pp32 富含亮氨酸重复蛋白的 N 端封端基序中,用丙氨酸取代异亮氨酸 7 会导致在 500 μs-2 ms CPMG 时间尺度上检测到压力依赖性构象交换。交换幅度从 N 端到 C 端减小,揭示了整个蛋白质构象交换的梯度。相比之下,通过 L60A 突变在 pp32 的核心引入空腔会导致通过 N-CEST 分析检测到较慢(>2 ms)时间尺度的压力诱导交换。激发态 N 化学位移表明,在 HP CEST 检测到的激发态中,N 端区域大部分展开,而核心保留天然样结构。这些 HP 化学交换测量表明,腔的位置决定了在不同时间尺度上的交换,突出了序列在确定蛋白质构象动力学方面的微妙而核心作用。