Suppr超能文献

高压 CPMG 和 CEST 揭示腔位置决定 PP32 重复蛋白中独特的动态无序。

High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein.

机构信息

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York12180, United States.

Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York12180, United States.

出版信息

J Phys Chem B. 2022 Dec 22;126(50):10597-10607. doi: 10.1021/acs.jpcb.2c05498. Epub 2022 Dec 1.

Abstract

Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by N-CEST analysis. Excited state N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.

摘要

鉴于构象动力学在蛋白质功能中的核心作用,描述与这些转变相关的时间尺度和结构至关重要。高压(HP)扰动有利于向激发态转变,因为它们通常占据较小的摩尔体积,从而便于描述构象动力学。重复蛋白具有简单的结构,是研究蛋白质构象动力学的序列依赖性的良好模型。通过 N CPMG 弛豫分散分析研究化学交换发现,在 pp32 富含亮氨酸重复蛋白的 N 端封端基序中,用丙氨酸取代异亮氨酸 7 会导致在 500 μs-2 ms CPMG 时间尺度上检测到压力依赖性构象交换。交换幅度从 N 端到 C 端减小,揭示了整个蛋白质构象交换的梯度。相比之下,通过 L60A 突变在 pp32 的核心引入空腔会导致通过 N-CEST 分析检测到较慢(>2 ms)时间尺度的压力诱导交换。激发态 N 化学位移表明,在 HP CEST 检测到的激发态中,N 端区域大部分展开,而核心保留天然样结构。这些 HP 化学交换测量表明,腔的位置决定了在不同时间尺度上的交换,突出了序列在确定蛋白质构象动力学方面的微妙而核心作用。

相似文献

引用本文的文献

1
A molten globule ensemble primes Arf1-GDP for the nucleotide switch.一个熔融球蛋白集合使 Arf1-GDP 为核苷酸开关做好准备。
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2413100121. doi: 10.1073/pnas.2413100121. Epub 2024 Sep 18.
2
Pressure pushes tRNA into excited conformational states.压力将 tRNA 推入激发的构象状态。
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2215556120. doi: 10.1073/pnas.2215556120. Epub 2023 Jun 20.

本文引用的文献

7
Unveiling invisible protein states with NMR spectroscopy.利用 NMR 光谱揭示不可见的蛋白质状态。
Curr Opin Struct Biol. 2020 Feb;60:39-49. doi: 10.1016/j.sbi.2019.10.008. Epub 2019 Dec 11.
8
How internal cavities destabilize a protein.内部空腔如何使蛋白质不稳定。
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21031-21036. doi: 10.1073/pnas.1911181116. Epub 2019 Sep 30.
10
Exploring Protein Conformational Landscapes Using High-Pressure NMR.利用高压核磁共振探索蛋白质构象景观。
Methods Enzymol. 2019;614:293-320. doi: 10.1016/bs.mie.2018.07.006. Epub 2018 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验