Kim Minsoo, Li Shuwei, Kong Da Seul, Song Young Eun, Park Soo-Yong, Kim Hyoung-Il, Jae Jungho, Chung Ildoo, Kim Jung Rae
School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
Chemosphere. 2023 Feb;313:137388. doi: 10.1016/j.chemosphere.2022.137388. Epub 2022 Nov 28.
The interactions between the microbes and the surface of an anode play an important role in capturing the respiratory electrons from bacteria in a microbial fuel cell (MFC). The chemical and electrochemical characteristics of the carbon material affect biofilm growth and direct electron transfer in MFCs. This study examined the electrodeposition of polydopamine (PDA) and polypyrrole (PPY) on graphite felt electrode (GF). The MFC with the modified PDA/PPY-GF reached 920 mW/m, which was 1.5, 1.17, and 1.18 times higher than those of the GF, PDA-GF, and PPY-GF, respectively. PDA has superior hydrophilicity and adhesive force biofilm formation, while PPY provides electrochemically active sites for microbial electron transfer. Raman spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area measurements, and contact angle analysis revealed the enhanced physicochemical properties of the carbon electrode. These results show that co-doped PDA/PPY provides a strategy for electroactive biofilm development and improves the bioelectrochemical performance in realistic MFC reactors.
微生物与阳极表面之间的相互作用在微生物燃料电池(MFC)中捕获细菌的呼吸电子方面起着重要作用。碳材料的化学和电化学特性会影响MFC中的生物膜生长和直接电子转移。本研究考察了聚多巴胺(PDA)和聚吡咯(PPY)在石墨毡电极(GF)上的电沉积情况。采用改性PDA/PPY-GF的MFC功率达到920 mW/m,分别比GF、PDA-GF和PPY-GF高出1.5倍、1.17倍和1.18倍。PDA具有优异的亲水性和生物膜形成粘附力,而PPY为微生物电子转移提供电化学活性位点。拉曼光谱、傅里叶变换红外光谱、布鲁诺尔-埃米特-特勒表面积测量和接触角分析揭示了碳电极物理化学性质的增强。这些结果表明,共掺杂PDA/PPY为电活性生物膜的发展提供了一种策略,并改善了实际MFC反应器中的生物电化学性能。