Suppr超能文献

机器学习在系统性红斑狼疮诊断中的应用:系统评价和荟萃分析。

Machine Learning for Diagnosis of Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis.

机构信息

Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Comput Intell Neurosci. 2022 Nov 22;2022:7167066. doi: 10.1155/2022/7167066. eCollection 2022.

Abstract

BACKGROUND

Application of machine learning (ML) for identification of systemic lupus erythematosus (SLE) has been recently drawing increasing attention, while there is still lack of evidence-based support.

METHODS

Systematic review and meta-analysis are conducted to evaluate its diagnostic accuracy and application prospect. PubMed, Embase, Cochrane Library, and Web of Science libraries are searched, in combination with manual searching and literature retrospection, for studies regarding machine learning for identifying SLE and neuropsychiatric systemic lupus erythematosus (NPSLE). Quality Assessment of Diagnostic Accuracy Studies (QUADA-2) is applied to assess the quality of included studies. Diagnostic accuracy of the SLE model and NPSLE model is assessed using the bivariate fixed-effect model, and the data are pooled. Summary receiver operator characteristic curve (SROC) is plotted, and area under the curve (AUC) is calculated.

RESULTS

Eighteen (18) studies are included, in which ten (10) focused on SLE and eight (8) on NPSLE. The AUC of SLE identification is 0.95, the sensitivity is 0.90, the specificity is 0.89, the PLR is 8.4, the NLR is 0.12, and the DOR is 73. AUC of NPSLE identification is 0.89, the sensitivity is 0.83, the specificity is 0.83, the PLR is 5.0, the NLR is 0.20, and the DOR is 25.

CONCLUSION

Machine learning presented remarkable performance in identification of SLE and NPSLE. Based on the convenience for inclusion factor collection and non-invasiveness of detection, machine learning is expected to be widely applied in clinical practice to assist medical decision making.

摘要

背景

机器学习(ML)在系统性红斑狼疮(SLE)识别中的应用近来受到越来越多的关注,但仍缺乏循证支持。

方法

系统评价和荟萃分析评估其诊断准确性和应用前景。检索 PubMed、Embase、Cochrane Library 和 Web of Science 库,并结合手动检索和文献回顾,以获取有关机器学习识别 SLE 和神经精神性系统性红斑狼疮(NPSLE)的研究。采用诊断准确性研究质量评估工具(QUADA-2)评估纳入研究的质量。使用双变量固定效应模型评估 SLE 模型和 NPSLE 模型的诊断准确性,并对数据进行汇总。绘制汇总受试者工作特征曲线(SROC),并计算曲线下面积(AUC)。

结果

纳入 18 项研究,其中 10 项聚焦于 SLE,8 项聚焦于 NPSLE。SLE 识别的 AUC 为 0.95,灵敏度为 0.90,特异度为 0.89,阳性似然比为 8.4,阴性似然比为 0.12,优势比为 73。NPSLE 识别的 AUC 为 0.89,灵敏度为 0.83,特异度为 0.83,阳性似然比为 5.0,阴性似然比为 0.20,优势比为 25。

结论

机器学习在 SLE 和 NPSLE 的识别中表现出显著的性能。基于纳入因素收集的便利性和检测的非侵入性,机器学习有望在临床实践中广泛应用,以辅助医疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d487/9708354/46eb38294c36/CIN2022-7167066.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验