Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
Norwegian Institute for Nature Research (NINA), Trondheim, Norway.
Ecology. 2023 Feb;104(2):e3934. doi: 10.1002/ecy.3934. Epub 2023 Jan 5.
Open-population spatial capture-recapture (OPSCR) models use the spatial information contained in individual detections collected over multiple consecutive occasions to estimate not only occasion-specific density, but also demographic parameters. OPSCR models can also estimate spatial variation in vital rates, but such models are neither widely used nor thoroughly tested. We developed a Bayesian OPSCR model that not only accounts for spatial variation in survival using spatial covariates but also estimates local density-dependent effects on survival within a unified framework. Using simulations, we show that OPSCR models provide sound inferences on the effect of spatial covariates on survival, including multiple competing sources of mortality, each with potentially different spatial determinants. Estimation of local density-dependent survival was possible but required more data due to the greater complexity of the model. Not accounting for spatial heterogeneity in survival led to up to 10% positive bias in abundance estimates. We provide an empirical demonstration of the model by estimating the effect of country and density on cause-specific mortality of female wolverines (Gulo gulo) in central Sweden and Norway. The ability to make population-level inferences on spatial variation in survival is an essential step toward a fully spatially explicit OPSCR model capable of disentangling the role of multiple spatial drivers of population dynamics.
开放式总体空间捕获-再捕获(OPSCR)模型利用在多个连续时间点上收集的个体检测中包含的空间信息,不仅可以估计特定时间的密度,还可以估计人口统计参数。OPSCR 模型还可以估计生命率的空间变化,但此类模型既没有得到广泛应用,也没有经过彻底测试。我们开发了一种贝叶斯 OPSCR 模型,该模型不仅使用空间协变量来解释生存中的空间变化,而且还在统一框架内估计生存的局部密度依赖性效应。通过模拟,我们表明 OPSCR 模型可以对空间协变量对生存的影响进行合理推断,包括多种可能具有不同空间决定因素的竞争性死亡源。对局部密度依赖性生存的估计是可能的,但由于模型的复杂性更高,因此需要更多的数据。不考虑生存的空间异质性会导致丰度估计值出现高达 10%的正偏差。我们通过估计瑞典和挪威中部雌性狼獾(Gulo gulo)的特定死因的国家和密度对其特定死因的死亡率的影响,为该模型提供了一个经验性的例证。能够对生存的空间变化进行群体水平推断是实现完全空间显式 OPSCR 模型的重要步骤,该模型能够分解多种人口动态的空间驱动因素的作用。