Zhu Zhiyuan, Huang Taicheng, Zhen Zonglei, Wang Boyu, Wu Xia, Li Shuo
School of Artificial Intelligence, Beijing Normal University, Beijing, China; Engineering Research Center of Intelligent Technology and Educational Application (Beijing Normal University), Ministry of Education, Beijing, China.
Faculty of Psychology, Beijing Normal University, Beijing, China.
Med Image Anal. 2023 Jan;83:102681. doi: 10.1016/j.media.2022.102681. Epub 2022 Nov 7.
Achieving predictions of brain functional activation patterns/task-fMRI maps from its underlying anatomy is an important yet challenging problem. Once successful, it will not only open up new ways to understand how brain anatomy influences functional organization of the brain, but also provide new technical support for the clinical use of anatomical information to guide the localization of cortical functional areas. However, due to the non-Euclidean complex architecture of brain anatomy and the inherent low signal-to-noise ratio (SNR) properties of fMRI signals, the key challenge in building such a cross-modal brain anatomo-functional mapping is how to effectively learn the context-aware information of brain anatomy and overcome the interference of noise-containing task-fMRI labels on the learning process. In this work, we propose a Unified Geometric Deep Learning framework (BrainUGDL) to perform the cross-modal brain anatomo-functional mapping task. Considering that both global and local structures of brain anatomy have an impact on brain functions from their respective perspectives, we innovatively propose the novel Global Graph Encoding (GGE) unit and Local Graph Attention (LGA) unit embedded into two parallel branches, focusing on learning the high-level global and local context information, respectively. Specifically, GGE learns the global context information of each mesh vertex by building and encoding global interactions, and LGA learns the local context information of each mesh vertex by selectively aggregating patch structure enhanced features from its spatial neighbors. The information learnt from the two branches is then fused to form a comprehensive representation of brain anatomical features for final brain function predictions. To address the inevitable measurement noise in task-fMRI labels, we further elaborate a novel uncertainty-filtered learning mechanism, which enables BrainUGDL to realize revised learning from the noise-containing labels through the estimated uncertainty. Experiments across seven open task-fMRI datasets from human connectome project (HCP) demonstrate the superiority of BrainUGDL. To our best knowledge, our proposed BrainUGDL is the first to achieve the prediction of individual task-fMRI maps solely based on brain sMRI data.
从大脑的基础解剖结构实现对大脑功能激活模式/任务功能磁共振成像图谱的预测是一个重要但具有挑战性的问题。一旦成功,它不仅将开辟新的途径来理解大脑解剖结构如何影响大脑的功能组织,还将为临床使用解剖信息以指导皮质功能区定位提供新的技术支持。然而,由于大脑解剖结构的非欧几里得复杂架构以及功能磁共振成像信号固有的低信噪比(SNR)特性,构建这种跨模态大脑解剖-功能映射的关键挑战在于如何有效地学习大脑解剖结构的上下文感知信息,并克服含噪任务功能磁共振成像标签对学习过程的干扰。在这项工作中,我们提出了一个统一的几何深度学习框架(BrainUGDL)来执行跨模态大脑解剖-功能映射任务。考虑到大脑解剖结构的全局和局部结构都从各自的角度对大脑功能有影响,我们创新性地提出了嵌入到两个并行分支中的新型全局图编码(GGE)单元和局部图注意力(LGA)单元,分别专注于学习高级全局和局部上下文信息。具体而言,GGE通过构建和编码全局交互来学习每个网格顶点的全局上下文信息,而LGA通过选择性地聚合来自其空间邻居的补丁结构增强特征来学习每个网格顶点的局部上下文信息。然后将从两个分支学到的信息融合,以形成大脑解剖特征的综合表示,用于最终的大脑功能预测。为了解决任务功能磁共振成像标签中不可避免的测量噪声,我们进一步阐述了一种新颖的不确定性过滤学习机制,这使得BrainUGDL能够通过估计的不确定性从含噪标签中实现修正学习。在来自人类连接组项目(HCP)的七个开放任务功能磁共振成像数据集上进行的实验证明了BrainUGDL的优越性。据我们所知,我们提出的BrainUGDL是首个仅基于大脑结构磁共振成像(sMRI)数据实现对个体任务功能磁共振成像图谱预测的方法。