Suppr超能文献

深度注意时空特征学习用于自动静息态 fMRI 去噪。

Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.

机构信息

Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Neuroimage. 2022 Jul 1;254:119127. doi: 10.1016/j.neuroimage.2022.119127. Epub 2022 Mar 23.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive functional neuroimaging modality that has been widely used to investigate functional connectomes in the brain. Since noise and artifacts generated by non-neuronal physiological activities are predominant in raw rs-fMRI data, effective noise removal is one of the most important preprocessing steps prior to any subsequent analysis. For rs-fMRI denoising, a common trend is to decompose rs-fMRI data into multiple components and then regress out noise-related components. Therefore, various machine learning techniques have been used in such analyses with predefined procedures and manually engineered features. However, the lack of a universal definition of a noise-related source or artifact complicates manual feature engineering. Manual feature selection can result in the failure to capture unknown types of noise. Furthermore, the possibility that the hand-crafted features will only work for the broader population (e.g., healthy adults) but not for "outliers" (e.g., infants or subjects that belong to a disease cohort) is quite high. In practice, we have limited knowledge of which features should be extracted; thus, multi-classifier assembly must be implemented to improve performance, although this process is quite time-consuming. However, in real rs-fMRI applications, fast and accurate automatic identification of noise-related components on different datasets is critical. To solve this problem, we propose a novel, automatic, and end-to-end deep learning framework dedicated to noise-related component identification via a faster and more effective multi-layer feature extraction strategy that learns deeply embedded spatio-temporal features of the components. In this study, we achieved remarkable performance on various rs-fMRI datasets, including multiple adult rs-fMRI datasets from different rs-fMRI studies and an infant rs-fMRI dataset, which is quite heterogeneous and differs from that of adults. Our proposed framework also dramatically increases the noise detection speed owing to its inherent ability for deep learning (< 1s for single-component classification). It can be easily integrated into any preprocessing pipeline, even those that do not use standard procedures but depend on alternative toolboxes.

摘要

静息态功能磁共振成像(rs-fMRI)是一种非侵入性的功能神经影像学方法,已广泛用于研究大脑中的功能连接组。由于非神经元生理活动产生的噪声和伪影在原始 rs-fMRI 数据中占主导地位,因此,在进行任何后续分析之前,有效去除噪声是最重要的预处理步骤之一。对于 rs-fMRI 去噪,一种常见的趋势是将 rs-fMRI 数据分解为多个分量,然后回归与噪声相关的分量。因此,各种机器学习技术已被用于此类分析中,这些分析具有预定义的程序和手动设计的特征。然而,由于缺乏与噪声相关的源或伪影的通用定义,使得手动特征工程变得复杂。手动特征选择可能无法捕获未知类型的噪声。此外,手工制作的特征可能仅适用于更广泛的人群(例如健康成年人),而不适用于“异常值”(例如婴儿或属于疾病队列的受试者)的可能性非常高。在实践中,我们对应该提取哪些特征知之甚少;因此,必须实施多分类器组装以提高性能,尽管此过程非常耗时。然而,在实际的 rs-fMRI 应用中,快速准确地识别不同数据集上与噪声相关的分量至关重要。为了解决这个问题,我们提出了一种新颖的、自动的、端到端的深度学习框架,该框架通过更快、更有效的多层特征提取策略,专门用于通过识别与噪声相关的成分,学习成分的深层次时空特征。在这项研究中,我们在各种 rs-fMRI 数据集上取得了显著的性能,包括来自不同 rs-fMRI 研究的多个成人 rs-fMRI 数据集和一个婴儿 rs-fMRI 数据集,这些数据集非常异构,与成人数据集不同。由于其深度学习的固有能力(单个分量分类的时间不到 1 秒),我们提出的框架还极大地提高了噪声检测速度。它可以轻松集成到任何预处理管道中,即使那些不使用标准程序,而是依赖于替代工具箱的管道也可以集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验