Schamberger Barbara, Ziege Ricardo, Anselme Karine, Ben Amar Martine, Bykowski Michał, Castro André P G, Cipitria Amaia, Coles Rhoslyn A, Dimova Rumiana, Eder Michaela, Ehrig Sebastian, Escudero Luis M, Evans Myfanwy E, Fernandes Paulo R, Fratzl Peter, Geris Liesbet, Gierlinger Notburga, Hannezo Edouard, Iglič Aleš, Kirkensgaard Jacob J K, Kollmannsberger Philip, Kowalewska Łucja, Kurniawan Nicholas A, Papantoniou Ioannis, Pieuchot Laurent, Pires Tiago H V, Renner Lars D, Sageman-Furnas Andrew O, Schröder-Turk Gerd E, Sengupta Anupam, Sharma Vikas R, Tagua Antonio, Tomba Caterina, Trepat Xavier, Waters Sarah L, Yeo Edwina F, Roschger Andreas, Bidan Cécile M, Dunlop John W C
Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria.
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Adv Mater. 2023 Mar;35(13):e2206110. doi: 10.1002/adma.202206110. Epub 2023 Feb 15.
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
表面曲率既源于生物物体,又在从细胞膜到单细胞再到组织和器官的长度尺度上影响生物物体的行为。近年来,众多实验和理论研究都证实了表面曲率在生物学中的相关性。在本综述中,首先简要介绍生物系统中表面曲率的关键概念,并讨论测量表面曲率时出现的挑战。概述生物系统中曲率的产生过程后,其在不同长度尺度上的重要性便显而易见。另一方面,总结当前研究结果还表明,单细胞以及整个细胞片层、组织或生物体都会通过调节自身形状和迁移行为来响应曲率。最后,通过实例阐述形态发生的这些关键机制原理,探讨了形态发生素或微生物的分布与不同长度尺度上曲率产生之间的相互作用。总体而言,本综述强调弯曲界面不仅是化学、生物和机械过程的被动副产品,而且曲率还作为一种信号共同决定这些过程。