Mesa María Hernández, McCabe Kimberly J, Rangamani Padmini
Department of Computational Physiology, Simula Research Laboratory, 0164 Oslo, Norway; Department of Informatics, University of Oslo, 0373 Oslo, Norway.
Department of Computational Physiology, Simula Research Laboratory, 0164 Oslo, Norway.
Biophys J. 2025 Apr 1;124(7):1058-1072. doi: 10.1016/j.bpj.2025.01.019. Epub 2025 Jan 28.
Synaptic morphology plays a critical role in modulating the dynamics of neurotransmitter diffusion and receptor activation in interneuron communication. Central physical aspects of synaptic geometry, such as the curvature of the synaptic cleft, the distance between the presynaptic and postsynaptic membranes, and the surface-area-to-volume ratio of the cleft, crucially influence glutamate diffusion and N-methyl-D-aspartate receptor (NMDAR) opening probabilities. In this study, we developed a stochastic model for receptor activation using realistic synaptic geometries. Our simulations revealed substantial variability in NMDAR activation, showing a significant impact of synaptic structure on receptor activation. Next, we designed a theoretical study with idealized cleft geometries to understand the impact of different biophysical properties on receptor activation. Specifically, we found that increasing the curvature of the synaptic membranes could compensate for reduced NMDAR activation when the synaptic cleft width was large. Additionally, nonparallel membrane configurations, such as convex presynapses or concave postsynaptic densities, maximize NMDAR activation by increasing the surface-area-to-volume ratio, thereby increasing glutamate residence time and reducing glutamate escape. Furthermore, clustering NMDARs within the postsynaptic density significantly increased receptor activation across different geometric conditions and mitigated the effects of synaptic morphology on NMDAR opening probabilities. These findings highlight the complex interplay between synaptic geometry and receptor dynamics and provide important insights into how structural modifications can influence synaptic efficacy and plasticity. By considering the major physical factors that affect neurotransmitter diffusion and receptor activation, our work offers a comprehensive understanding of how variations in synaptic geometry may regulate neurotransmission.
突触形态在调节中间神经元通信中神经递质扩散和受体激活的动力学方面起着关键作用。突触几何结构的核心物理方面,如突触间隙的曲率、突触前膜和突触后膜之间的距离以及间隙的表面积与体积比,对谷氨酸扩散和N-甲基-D-天冬氨酸受体(NMDAR)的开放概率有着至关重要的影响。在本研究中,我们使用逼真的突触几何结构开发了一种受体激活的随机模型。我们的模拟揭示了NMDAR激活存在显著变异性,表明突触结构对受体激活有重大影响。接下来,我们设计了一项针对理想化间隙几何结构的理论研究,以了解不同生物物理特性对受体激活的影响。具体而言,我们发现当突触间隙宽度较大时,增加突触膜的曲率可以补偿NMDAR激活的降低。此外,非平行膜配置,如凸形突触前或凹形突触后密度,通过增加表面积与体积比来最大化NMDAR激活,从而增加谷氨酸停留时间并减少谷氨酸逃逸。此外,在突触后密度内聚集NMDAR在不同几何条件下显著增加了受体激活,并减轻了突触形态对NMDAR开放概率的影响。这些发现突出了突触几何结构与受体动力学之间的复杂相互作用,并为结构修饰如何影响突触效能和可塑性提供了重要见解。通过考虑影响神经递质扩散和受体激活的主要物理因素,我们的工作全面理解了突触几何结构的变化如何调节神经传递。