Kim Kanghyeon, Min Sunhong, Thangam Ramar, Tag Kyong-Ryol, Lee Hyun-Jeong, Heo Jeongyun, Jung Hwapyung, Swe Thet Thet, Zare Iman, Song Guosheng, Najafabadi Alireza Hassani, Lee Junmin, Jung Hyun-Do, Kim Jong Seung, Hur Sunghoon, Song Hyun-Cheol, Park Sung-Gyu, Zhang Kunyu, Zhao Pengchao, Bian Liming, Kim Se Hoon, Yoon Juyoung, Ahn Jae-Pyoung, Kim Hong-Kyu, Kang Heemin
Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea.
Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
Bioact Mater. 2025 Jan 19;47:121-135. doi: 10.1016/j.bioactmat.2025.01.009. eCollection 2025 May.
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic FeO (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
多种结缔组织呈现出层次化的各向异性结构,这些结构错综复杂地调节着体内平衡和组织功能,以实现动态免疫反应调节。在本研究中,可远程操控的层次化纳米结构经过定制,以展现多尺度配体各向异性。层次化纳米结构的构建包括将配体化的纳米级各向同性/各向异性金(与少数整合素分子尺度相当)与微米级各向同性/各向异性磁性FeO(与整合素簇尺度相当)的表面偶联,然后将它们弹性连接到基底上。在具有恒定配体表面积的四种不同层次化纳米结构中,对纳米级或微米级配体各向同性与各向异性进行系统的独立定制,结果表明,在纳米级配体各向同性与各向异性方面,整合素分子桥接和巨噬细胞粘附的水平相似。相反,与微米级配体各向同性相比,微米级配体各向异性显著促进了跨层次化纳米结构的整合素簇桥接和巨噬细胞粘附。此外,与纳米级配体各向异性相比,微米级配体各向异性主要激活宿主巨噬细胞粘附和促再生M2极化,这可以通过靠近基底与远离基底的磁性操控循环逆转。这种前所未有的细胞尺度特异性调节可以通过对层次化结构的尺度、各向异性、尺寸、形状和磁性进行无限调整来实现多样化,从而破译尺度特异性的动态细胞-材料相互作用,以推进免疫工程策略。