Suppr超能文献

系统评价:YouTube推荐内容与问题内容

Systematic review: YouTube recommendations and problematic content.

作者信息

Yesilada Muhsin, Lewandowsky Stephan

机构信息

University of Bristol.

出版信息

Internet Policy Rev. 2022 Mar 31;11(1):1652. doi: 10.14763/2022.1.1652.

Abstract

There has been much concern that social media, in particular YouTube, may facilitate radicalisation and polarisation of online audiences. This systematic review aimed to determine whether the YouTube recommender system facilitates pathways to problematic content such as extremist or radicalising material. The review conducted a narrative synthesis of the papers in this area. It assessed the eligibility of 1,187 studies and excluded studies using the PRISMA process for systematic reviews, leaving a final sample of 23 studies. Overall, 14 studies implicated the YouTube recommender system in facilitating problematic content pathways, seven produced mixed results, and two did not implicate the recommender system. The review's findings indicate that the YouTube recommender system could lead users to problematic content. However, due to limited access and an incomplete understanding of the YouTube recommender system, the models built by researchers might not reflect the actual mechanisms underlying the YouTube recommender system and pathways to problematic content.

摘要

人们一直非常担心社交媒体,尤其是YouTube,可能会促使在线用户激进化和两极分化。这项系统评价旨在确定YouTube推荐系统是否会促成通往问题内容的途径,如极端主义或激进化材料。该评价对该领域的论文进行了叙述性综合分析。它使用系统评价的PRISMA流程评估了1187项研究的 eligibility,并排除了相关研究,最终样本为23项研究。总体而言,14项研究表明YouTube推荐系统促成了问题内容途径,7项研究结果不一,2项研究未表明推荐系统有此作用。该评价的结果表明,YouTube推荐系统可能会引导用户接触到问题内容。然而,由于对YouTube推荐系统的访问有限且理解不完整,研究人员构建的模型可能无法反映YouTube推荐系统以及通往问题内容途径背后的实际机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5599/7613872/4267177a8b4a/EMS156628-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验