Suppr超能文献

微调推荐算法可增加YouTube上的新闻消费量和多样性。

Nudging recommendation algorithms increases news consumption and diversity on YouTube.

作者信息

Yu Xudong, Haroon Muhammad, Menchen-Trevino Ericka, Wojcieszak Magdalena

机构信息

Department of Communication, University of North Dakota, Grand Forks, USA.

Department of Computer Science, University of California, Davis, USA.

出版信息

PNAS Nexus. 2024 Nov 19;3(12):pgae518. doi: 10.1093/pnasnexus/pgae518. eCollection 2024 Dec.

Abstract

Recommendation algorithms profoundly shape users' attention and information consumption on social media platforms. This study introduces a computational intervention aimed at mitigating two key biases in algorithms by influencing the recommendation process. We tackle , or algorithms creating narrow nonnews and entertainment information diets, and , or algorithms directing the more strongly partisan users to like-minded content. Employing a sock-puppet experiment ( sock puppets) alongside a month-long randomized experiment involving 2,142 frequent YouTube users, we investigate if nudging the algorithm by playing videos from verified and ideologically balanced news channels in the background increases recommendations to and consumption of news. We additionally test if providing balanced news input to the algorithm promotes diverse and cross-cutting news recommendations and consumption. We find that nudging the algorithm significantly and sustainably increases both recommendations to and consumption of news and also minimizes ideological biases in recommendations and consumption, particularly among conservative users. In fact, recommendations have stronger effects on users' exposure than users' exposure has on subsequent recommendations. In contrast, nudging the users has no observable effects on news consumption. Increased news consumption has no effects on a range of survey outcomes (i.e. political participation, belief accuracy, perceived and affective polarization, and support for democratic norms), adding to the growing evidence of limited attitudinal effects of on-platform exposure. The intervention does not adversely affect user engagement on YouTube, showcasing its potential for real-world implementation. These findings underscore the influence wielded by platform recommender algorithms on users' attention and information exposure.

摘要

推荐算法深刻地塑造了用户在社交媒体平台上的注意力和信息消费方式。本研究引入了一种计算干预措施,旨在通过影响推荐过程来减轻算法中的两个关键偏差。我们要解决的是算法制造狭隘的非新闻和娱乐信息偏好的问题,以及算法将党派倾向更强的用户引导至观点相似内容的问题。我们采用了一个虚拟账号实验(使用虚拟账号)以及一项为期一个月的随机实验,该实验涉及2142名YouTube的频繁用户,我们研究在后台播放经过验证且意识形态平衡的新闻频道的视频来微调算法,是否会增加对新闻的推荐和新闻消费。我们还测试了向算法提供平衡的新闻输入是否会促进多样化和交叉性的新闻推荐与消费。我们发现,微调算法能显著且持续地增加对新闻的推荐和新闻消费,同时还能最大限度地减少推荐和消费中的意识形态偏差,尤其是在保守派用户中。事实上,推荐对用户曝光的影响比对后续推荐的用户曝光的影响更大。相比之下,引导用户对新闻消费没有明显影响。新闻消费的增加对一系列调查结果(即政治参与、信念准确性、感知和情感极化以及对民主规范的支持)没有影响,这进一步证明了平台曝光对态度影响有限的证据越来越多。这种干预措施不会对YouTube上的用户参与度产生不利影响,展示了其在现实世界中实施的潜力。这些发现凸显了平台推荐算法对用户注意力和信息曝光的影响力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3cb/11604067/cc2eb4c4dbb0/pgae518f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验