Xie Kangfan, Fu Guoshuai, Xu Ruiqi, Ding Weimi, Yang Guowei, Yu Peng, Li Jiling, Liu Pu
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P.R. China.
Las Nova (Foshan) Technology Co., Ltd, Zhongfa Zhaochang Science Park, Foshan 528244, Guangdong, P.R. China.
iScience. 2025 Aug 6;28(9):113294. doi: 10.1016/j.isci.2025.113294. eCollection 2025 Sep 19.
Scalable water electrolysis requires mass-producible electrocatalysts for efficient hydrogen evolution reaction (HER) at high current densities. We developed a pulsed laser fusion method to synthesize Pd-CuInPS composites on graphene or MXene TiC nanosheets. These catalysts exhibit enhanced charge transfer and abundant active sites, outperforming commercial Pt/C in both acidic (0.5 M HSO) and alkaline (1 M KOH) electrolytes. Density functional theory (DFT) analysis reveals synergistic HER enhancement via interstitial H and substituted In atoms. The optimized catalysts achieve remarkable overpotentials of -388 and -384 mV at 1,000 mA cm (acid), with Tafel slopes of 61 and 67 mV dec, while demonstrating -455 and -450 mV overpotentials (alkaline) with 152 and 150 mV dec Tafel slopes, respectively. They maintain exceptional stability over 10,000 CV cycles and extended operation at -500 mA cm, significantly surpassing Pt/C durability. This laser fabrication strategy enables scalable production of efficient, stable low-precious-metal catalysts for industrial HER.
可扩展的水电解需要能够大规模生产的电催化剂,以便在高电流密度下实现高效析氢反应(HER)。我们开发了一种脉冲激光熔合方法,用于在石墨烯或MXene TiC纳米片上合成Pd-CuInPS复合材料。这些催化剂表现出增强的电荷转移和丰富的活性位点,在酸性(0.5 M HSO)和碱性(1 M KOH)电解质中均优于商业Pt/C。密度泛函理论(DFT)分析表明,间隙H和取代In原子协同增强了析氢反应。优化后的催化剂在1000 mA cm²(酸性)下实现了-388和-384 mV的显著过电位,塔菲尔斜率分别为61和67 mV dec⁻¹,而在碱性条件下,过电位分别为-455和-450 mV,塔菲尔斜率分别为152和150 mV dec⁻¹。它们在10000次循环伏安(CV)循环中保持了出色的稳定性,并在-500 mA cm²下实现了长时间运行,显著超过了Pt/C的耐久性。这种激光制造策略能够大规模生产用于工业析氢反应的高效、稳定的低贵金属催化剂。