MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
Laboratory of Biomedical Imaging (LIB), Lausanne, Switzerland.
Elife. 2022 Dec 5;11:e83724. doi: 10.7554/eLife.83724.
We present a new approach for macromolecular structure determination from multiple particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on 3D data models, we propose to optimise a regularised likelihood target that approximates a function of the 2D experimental images. In addition, analogous to Bayesian polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe the approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise tilt-series alignments, beam-induced motions of the particles throughout the tilt-series acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope. Implementation of our approaches in the open-source software package RELION aims to facilitate their general use, particularly for those researchers who are already familiar with its single-particle analysis tools. We illustrate for three applications that our approaches allow structure determination from cryo-ET data to resolutions sufficient for de novo atomic modelling.
我们提出了一种新的方法,用于从电子冷冻断层扫描(cryo-ET)数据集中的多个粒子中确定大分子结构。虽然现有的子断层平均方法基于 3D 数据模型,但我们建议优化正则化似然目标,该目标近似于 2D 实验图像的函数。此外,类似于单颗粒分析中的贝叶斯抛光和对比度传递函数(CTF)细化,我们描述了利用平均结构中增加的信噪比来优化倾斜系列对准、倾斜系列采集过程中粒子的束诱导运动、单个粒子的离焦以及显微镜的高阶像差的方法。我们的方法在开源软件包 RELION 中的实现旨在促进其广泛使用,特别是对于那些已经熟悉其单颗粒分析工具的研究人员。我们通过三个应用案例说明了我们的方法可以从 cryo-ET 数据中确定足够用于从头原子建模的分辨率的结构。